Relevance Vector Ranking for Information Retrieval

Fengxia Wang, Huixia Jin, Xiao Chang
{"title":"Relevance Vector Ranking for Information Retrieval","authors":"Fengxia Wang, Huixia Jin, Xiao Chang","doi":"10.4156/JCIT.VOL5.ISSUE9.12","DOIUrl":null,"url":null,"abstract":"In recent years, learning ranking function for information retrieval has drawn the attentions of the researchers from information retrieval and machine learning community. In existing approaches of learning to rank, the sparse prediction model only can be learned by support vector learning approach. However, the number of support vectors grows steeply with the size of the training data set. In this paper, we propose a sparse Bayesian kernel approach to learn ranking function. By this approach accurate prediction models can be derived, which typically utilize fewer basis functions than the comparable SVM-based approaches while offering a number of additional advantages. Experimental results on document retrieval data set show that the generalization performance of this approach competitive with two state-of-the-art approaches and the prediction model learned by it is typically sparse.","PeriodicalId":360193,"journal":{"name":"J. Convergence Inf. Technol.","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Convergence Inf. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4156/JCIT.VOL5.ISSUE9.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In recent years, learning ranking function for information retrieval has drawn the attentions of the researchers from information retrieval and machine learning community. In existing approaches of learning to rank, the sparse prediction model only can be learned by support vector learning approach. However, the number of support vectors grows steeply with the size of the training data set. In this paper, we propose a sparse Bayesian kernel approach to learn ranking function. By this approach accurate prediction models can be derived, which typically utilize fewer basis functions than the comparable SVM-based approaches while offering a number of additional advantages. Experimental results on document retrieval data set show that the generalization performance of this approach competitive with two state-of-the-art approaches and the prediction model learned by it is typically sparse.
信息检索的相关向量排序
近年来,面向信息检索的学习排序函数受到了信息检索界和机器学习界研究者的关注。在现有的学习排序方法中,稀疏预测模型只能通过支持向量学习方法学习。然而,支持向量的数量随着训练数据集的规模而急剧增长。本文提出了一种稀疏贝叶斯核学习排序函数的方法。通过这种方法可以推导出准确的预测模型,它通常比基于svm的方法使用更少的基函数,同时提供许多额外的优点。在文档检索数据集上的实验结果表明,该方法的泛化性能与两种最先进的方法相媲美,并且所学习的预测模型具有典型的稀疏性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信