Comparison of identification algorithms based on the combining maximum principle and the regularization

A. Kostoglotov, Oksana Andreevna Kostoglotova, Igor Deryabkin, Igor Evgenevich Kirillov, S. Lazarenko
{"title":"Comparison of identification algorithms based on the combining maximum principle and the regularization","authors":"A. Kostoglotov, Oksana Andreevna Kostoglotova, Igor Deryabkin, Igor Evgenevich Kirillov, S. Lazarenko","doi":"10.1109/ICMSC.2017.7959474","DOIUrl":null,"url":null,"abstract":"The variational methods of parametric identification which use the physical features of the studied systems in the form of the Hamilton — Ostrogradskii variational principle are studied. On this basis the identification algorithms resistant to measurement noise and having high convergence rate of their estimates to the actual values are produced. This is confirmed by comparing the results of mathematical simulation of the developed algorithms with the Kalman filter.","PeriodicalId":356055,"journal":{"name":"2017 International Conference on Mechanical, System and Control Engineering (ICMSC)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Mechanical, System and Control Engineering (ICMSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMSC.2017.7959474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The variational methods of parametric identification which use the physical features of the studied systems in the form of the Hamilton — Ostrogradskii variational principle are studied. On this basis the identification algorithms resistant to measurement noise and having high convergence rate of their estimates to the actual values are produced. This is confirmed by comparing the results of mathematical simulation of the developed algorithms with the Kalman filter.
结合极大值原理与正则化方法的辨识算法比较
利用所研究系统的物理特性,以Hamilton - Ostrogradskii变分原理的形式研究了参数辨识的变分方法。在此基础上,提出了抗测量噪声、估计值与实际值收敛率高的识别算法。通过将所开发算法的数学模拟结果与卡尔曼滤波进行比较,证实了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信