Efficient clustering and quantisation of SIFT features: exploiting characteristics of the SIFT descriptor and interest region detectors under image inversion

Jonathon S. Hare, Sina Samangooei, P. Lewis
{"title":"Efficient clustering and quantisation of SIFT features: exploiting characteristics of the SIFT descriptor and interest region detectors under image inversion","authors":"Jonathon S. Hare, Sina Samangooei, P. Lewis","doi":"10.1145/1991996.1991998","DOIUrl":null,"url":null,"abstract":"The SIFT keypoint descriptor is a powerful approach to encoding local image description using edge orientation histograms. Through codebook construction via k-means clustering and quantisation of SIFT features we can achieve image retrieval treating images as bags-of-words. Intensity inversion of images results in distinct SIFT features for a single local image patch across the two images. Intensity inversions notwithstanding these two patches are structurally identical. Through careful reordering of the SIFT feature vectors, we can construct the SIFT feature that would have been generated from a non-inverted image patch starting with those extracted from an inverted image patch. Furthermore, through examination of the local feature detection stage, we can estimate whether a given SIFT feature belongs in the space of inverted features, or non-inverted features. Therefore we can consistently separate the space of SIFT features into two distinct subspaces. With this knowledge, we can demonstrate reduced time complexity of codebook construction via clustering by up to a factor of four and also reduce the memory consumption of the clustering algorithms while producing equivalent retrieval results.","PeriodicalId":390933,"journal":{"name":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1991996.1991998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

The SIFT keypoint descriptor is a powerful approach to encoding local image description using edge orientation histograms. Through codebook construction via k-means clustering and quantisation of SIFT features we can achieve image retrieval treating images as bags-of-words. Intensity inversion of images results in distinct SIFT features for a single local image patch across the two images. Intensity inversions notwithstanding these two patches are structurally identical. Through careful reordering of the SIFT feature vectors, we can construct the SIFT feature that would have been generated from a non-inverted image patch starting with those extracted from an inverted image patch. Furthermore, through examination of the local feature detection stage, we can estimate whether a given SIFT feature belongs in the space of inverted features, or non-inverted features. Therefore we can consistently separate the space of SIFT features into two distinct subspaces. With this knowledge, we can demonstrate reduced time complexity of codebook construction via clustering by up to a factor of four and also reduce the memory consumption of the clustering algorithms while producing equivalent retrieval results.
SIFT特征的高效聚类和量化:利用SIFT描述子和感兴趣区域检测器在图像反演下的特性
SIFT关键点描述符是一种使用边缘方向直方图编码局部图像描述的强大方法。通过k-means聚类构建码本,对SIFT特征进行量化,实现将图像作为词袋的图像检索。图像的强度反演结果在两个图像之间的单个局部图像补丁中具有不同的SIFT特征。尽管强度反转,这两个斑块在结构上是相同的。通过仔细地重新排序SIFT特征向量,我们可以从从倒排图像patch中提取的特征开始构建非倒排图像patch生成的SIFT特征。进一步,通过检查局部特征检测阶段,我们可以估计给定的SIFT特征是属于倒转特征空间还是非倒转特征空间。因此,我们可以一致地将SIFT特征空间分离为两个不同的子空间。有了这些知识,我们可以证明通过聚类将码本构建的时间复杂度降低了四倍,并且在产生等效检索结果的同时还减少了聚类算法的内存消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信