A Simulation Study of Scaling Capability toward 10nm for the 3D Stackable Gate-Controlled Thyristor (GCT) DRAM Device

Wei-Chen Chen, H. Lue, T. Hsu, Keh-Chung Wang, Chih-Yuan Lu
{"title":"A Simulation Study of Scaling Capability toward 10nm for the 3D Stackable Gate-Controlled Thyristor (GCT) DRAM Device","authors":"Wei-Chen Chen, H. Lue, T. Hsu, Keh-Chung Wang, Chih-Yuan Lu","doi":"10.1109/IMW56887.2023.10145823","DOIUrl":null,"url":null,"abstract":"Planar 1T1C DRAM has encountered numerous challenges as it reaches beyond $1 \\mathrm{z}-\\mathrm{nm}$ node. The daunting task of manufacturing a low-leakage access transistor and high aspectratio capacitor necessitates a disruptive technology to continue the relentless scaling path similar to the migration of $2 D$ to $3 D$ NAND. In this work, we will touch up on the scaling difficulties associated with 2D 1T1C DRAM and then examine the possible options of 3D DRAM, including flipped 1T1C DRAM, 2T0C gain-cell DRAM, and 3D stackable gate-controlled-thyristor (GCT) DRAM. We will show that the capacitor-less GCT DRAM, which shares the architectural features of CMOS nanosheet and 3D NAND, possesses good potential of realizing a truly 3D stackable structure. Furthermore, the scaling capability toward $10 \\mathrm{~nm}$ of such GCT device is verified by TCAD simulation when the channel length and width are downscaled simultaneously. Meanwhile, the gate oxide thickness thinning is unnecessary because the thyristor operation principles are different from the MOSFET. The simulated $\\mathrm{Lch} / \\mathrm{Wch}=10 \\mathrm{~nm}$ GCT device can well preserve $\\gt 2 \\mathrm{~V}$ hysteresis memory window, large read current ON/OFF ratio of $\\gt 1 E 8$, and $110 \\mu \\mathrm{A}$ sensing current window, paving a way for aggressive $X / Y$ pitch scaling for the $3 D$ stackable DRAM device.","PeriodicalId":153429,"journal":{"name":"2023 IEEE International Memory Workshop (IMW)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Memory Workshop (IMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMW56887.2023.10145823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Planar 1T1C DRAM has encountered numerous challenges as it reaches beyond $1 \mathrm{z}-\mathrm{nm}$ node. The daunting task of manufacturing a low-leakage access transistor and high aspectratio capacitor necessitates a disruptive technology to continue the relentless scaling path similar to the migration of $2 D$ to $3 D$ NAND. In this work, we will touch up on the scaling difficulties associated with 2D 1T1C DRAM and then examine the possible options of 3D DRAM, including flipped 1T1C DRAM, 2T0C gain-cell DRAM, and 3D stackable gate-controlled-thyristor (GCT) DRAM. We will show that the capacitor-less GCT DRAM, which shares the architectural features of CMOS nanosheet and 3D NAND, possesses good potential of realizing a truly 3D stackable structure. Furthermore, the scaling capability toward $10 \mathrm{~nm}$ of such GCT device is verified by TCAD simulation when the channel length and width are downscaled simultaneously. Meanwhile, the gate oxide thickness thinning is unnecessary because the thyristor operation principles are different from the MOSFET. The simulated $\mathrm{Lch} / \mathrm{Wch}=10 \mathrm{~nm}$ GCT device can well preserve $\gt 2 \mathrm{~V}$ hysteresis memory window, large read current ON/OFF ratio of $\gt 1 E 8$, and $110 \mu \mathrm{A}$ sensing current window, paving a way for aggressive $X / Y$ pitch scaling for the $3 D$ stackable DRAM device.
三维可堆叠门控晶闸管(GCT) DRAM器件向10nm缩放能力的仿真研究
Planar 1T1C DRAM在突破$1 \ mathm {z}-\ mathm {nm}$节点时遇到了许多挑战。制造低泄漏接入晶体管和高散射比电容器的艰巨任务需要一种颠覆性技术来继续持续不断的缩放路径,类似于从2d到3d NAND的迁移。在这项工作中,我们将详细介绍与2D 1T1C DRAM相关的缩放困难,然后研究3D DRAM的可能选择,包括翻转1T1C DRAM, 2T0C增益单元DRAM和3D可堆叠门控晶闸管(GCT) DRAM。我们将证明无电容GCT DRAM具有CMOS纳米片和3D NAND的架构特征,具有实现真正的3D可堆叠结构的良好潜力。此外,通过TCAD仿真验证了该GCT器件在通道长度和宽度同时缩小的情况下,对$10 \ mathm {~nm}$的缩放能力。同时,由于晶闸管的工作原理与MOSFET不同,栅极氧化物厚度的减薄是不必要的。模拟的$\ mathm {Lch} / \ mathm {Wch}=10 \ mathm {~nm}$ GCT器件可以很好地保留$\ mathm {~V}$滞后内存窗口、$\ mathm {~V}$大的读电流ON/OFF比$\gt 1 e8 $和$110 \mu \ mathm {A}$感应电流窗口,为$ 3d $可堆叠DRAM器件的积极的$X / Y$间距缩放铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信