{"title":"Testing Hypotheses About Glacial Dynamics and the Stage 11 Paradox Using a Statistical Model of Paleo-Climate","authors":"R. Kaufmann, F. Pretis","doi":"10.5194/cp-2020-58","DOIUrl":null,"url":null,"abstract":"Abstract. To test hypotheses about glacial dynamics, the Mid-Brunhes event, and the stage 11 paradox, we evaluate the ability of a statistical model to simulate climate during the previous ~800 000 years. Throughout this period, the model simulates the timing and magnitude of glacial cycles, including the saw-tooth pattern in which ice accumulates gradually and ablates rapidly, without nonlinearities or threshold effects. This suggests that nonlinearities and/or threshold effects do not play a critical role in glacial cycles. Furthermore, model accuracy throughout the previous ~800 000 years suggest that changes in glacial cycles associated with the Mid-Brunhes event, which occurs near the division between the out-of-sample period and the in-sample period, are not caused by changes in the dynamics of the climate system. Conversely, poor model performance during MIS stage 11 and Termination V is consistent with arguments that the stage 11 paradox represents a mismatch between orbital geometry and climate. Statistical orderings of simulation errors indicate that periods of reduced accuracy start with significant reductions in the model's ability to simulate carbon dioxide, non-sea-salt sodium, and non-sea-salt calcium. Their importance suggests that the stage 11 paradox is generated by changes in atmospheric and/or oceanic circulation that affect ocean ventilation of carbon dioxide.","PeriodicalId":263057,"journal":{"name":"Climate of The Past Discussions","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate of The Past Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/cp-2020-58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract. To test hypotheses about glacial dynamics, the Mid-Brunhes event, and the stage 11 paradox, we evaluate the ability of a statistical model to simulate climate during the previous ~800 000 years. Throughout this period, the model simulates the timing and magnitude of glacial cycles, including the saw-tooth pattern in which ice accumulates gradually and ablates rapidly, without nonlinearities or threshold effects. This suggests that nonlinearities and/or threshold effects do not play a critical role in glacial cycles. Furthermore, model accuracy throughout the previous ~800 000 years suggest that changes in glacial cycles associated with the Mid-Brunhes event, which occurs near the division between the out-of-sample period and the in-sample period, are not caused by changes in the dynamics of the climate system. Conversely, poor model performance during MIS stage 11 and Termination V is consistent with arguments that the stage 11 paradox represents a mismatch between orbital geometry and climate. Statistical orderings of simulation errors indicate that periods of reduced accuracy start with significant reductions in the model's ability to simulate carbon dioxide, non-sea-salt sodium, and non-sea-salt calcium. Their importance suggests that the stage 11 paradox is generated by changes in atmospheric and/or oceanic circulation that affect ocean ventilation of carbon dioxide.