D. D. Brok, S. Merzbach, Michael Weinmann, R. Klein
{"title":"Per-Image Super-Resolution for Material BTFs","authors":"D. D. Brok, S. Merzbach, Michael Weinmann, R. Klein","doi":"10.1109/ICCP48838.2020.9105256","DOIUrl":null,"url":null,"abstract":"Image-based appearance measurements are fundamentally limited in spatial resolution by the acquisition hardware. Due to the ever-increasing resolution of displaying hardware, high-resolution representations of digital material appearance are desireable for authentic renderings. In the present paper, we demonstrate that high-resolution bidirectional texture functions (BTFs) for materials can be obtained from low-resolution measurements using single-image convolutional neural network (CNN) architectures for image super-resolution. In particular, we show that this approach works for high-dynamic-range data and produces consistent BTFs, even though it operates on an image-by-image basis. Moreover, the CNN can be trained on down-sampled measured data, therefore no high-resolution ground-truth data, which would be difficult to obtain, is necessary. We train and test our method's performance on a large-scale BTF database and evaluate against the current state-of-the-art in BTF super-resolution, finding superior performance.","PeriodicalId":406823,"journal":{"name":"2020 IEEE International Conference on Computational Photography (ICCP)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Computational Photography (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP48838.2020.9105256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Image-based appearance measurements are fundamentally limited in spatial resolution by the acquisition hardware. Due to the ever-increasing resolution of displaying hardware, high-resolution representations of digital material appearance are desireable for authentic renderings. In the present paper, we demonstrate that high-resolution bidirectional texture functions (BTFs) for materials can be obtained from low-resolution measurements using single-image convolutional neural network (CNN) architectures for image super-resolution. In particular, we show that this approach works for high-dynamic-range data and produces consistent BTFs, even though it operates on an image-by-image basis. Moreover, the CNN can be trained on down-sampled measured data, therefore no high-resolution ground-truth data, which would be difficult to obtain, is necessary. We train and test our method's performance on a large-scale BTF database and evaluate against the current state-of-the-art in BTF super-resolution, finding superior performance.