Constructing the operator matrix for the optimal control of linear lower order non-dispersive waves

Is Ukwosa, Sa Reju
{"title":"Constructing the operator matrix for the optimal control of linear lower order non-dispersive waves","authors":"Is Ukwosa, Sa Reju","doi":"10.4314/JONAMP.V11I1.40212","DOIUrl":null,"url":null,"abstract":"Non-dispersive waves propagate with constant phase velocities therefore they are indispensable in communication and some other areas of application. This paper constructed the Operator, R, for the control of linear lower order non-dispersive wave equation using the extended conjugate gradient Method proposed in [2]. The work of Ibiejugba et al, [3] was on the role of multipliers in the multiplier method which was applied to dynamical system. This work involves system governed by first order partial differential equation, namely linear lower order non-dispersive wave. JONAMP Vol. 11 2007: pp. 191-198","PeriodicalId":402697,"journal":{"name":"Journal of the Nigerian Association of Mathematical Physics","volume":"386 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Nigerian Association of Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/JONAMP.V11I1.40212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Non-dispersive waves propagate with constant phase velocities therefore they are indispensable in communication and some other areas of application. This paper constructed the Operator, R, for the control of linear lower order non-dispersive wave equation using the extended conjugate gradient Method proposed in [2]. The work of Ibiejugba et al, [3] was on the role of multipliers in the multiplier method which was applied to dynamical system. This work involves system governed by first order partial differential equation, namely linear lower order non-dispersive wave. JONAMP Vol. 11 2007: pp. 191-198
构造线性低阶非色散波最优控制的算子矩阵
非色散波以恒定的相速度传播,因此在通信和其他一些应用领域是不可缺少的。本文利用[2]中提出的扩展共轭梯度法构造了控制线性低阶非色散波动方程的算子R。Ibiejugba等人的工作是关于乘法器在应用于动力系统的乘法器中的作用。本工作涉及一阶偏微分方程控制的系统,即线性低阶非色散波。JONAMP Vol. 11 2007: pp. 191-198
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信