Deep Learning Based Direction of Arrival Estimation of Multiple Targets

Saiqin Xu, Baixiao Chen, Hao Lian, Zheming Guo
{"title":"Deep Learning Based Direction of Arrival Estimation of Multiple Targets","authors":"Saiqin Xu, Baixiao Chen, Hao Lian, Zheming Guo","doi":"10.1109/ICEICT55736.2022.9908986","DOIUrl":null,"url":null,"abstract":"We develop a deep learning framework for Direction of Arrival (DOA) estimation. The sparse power spectrum inspires us, and the first shows that the columns of the array covariance matrix can be formulated as undersampled linear measurements of the spatial spectrum. Secondly, we introduce a Deep Neural Network (DNN) that learns potential inverse transformation from large training dataset. Our proposed DNN-based framework provides a larger aperture with a small number of antennas. Moreover, we reduce the hardware complexity and allow reconfig-urability of the receiver channels. Our solution is able to estimate a number of closely spaced targets larger than the number of receiver channels. Through numerical simulations, our proposed method overmatches the most advanced DOA estimation methods based on deep learning, particularly with limited snapshot and low signal-to-noise ratio (SNR) situations.","PeriodicalId":179327,"journal":{"name":"2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEICT55736.2022.9908986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a deep learning framework for Direction of Arrival (DOA) estimation. The sparse power spectrum inspires us, and the first shows that the columns of the array covariance matrix can be formulated as undersampled linear measurements of the spatial spectrum. Secondly, we introduce a Deep Neural Network (DNN) that learns potential inverse transformation from large training dataset. Our proposed DNN-based framework provides a larger aperture with a small number of antennas. Moreover, we reduce the hardware complexity and allow reconfig-urability of the receiver channels. Our solution is able to estimate a number of closely spaced targets larger than the number of receiver channels. Through numerical simulations, our proposed method overmatches the most advanced DOA estimation methods based on deep learning, particularly with limited snapshot and low signal-to-noise ratio (SNR) situations.
基于深度学习的多目标到达方向估计
我们开发了一个深度学习框架,用于到达方向(DOA)估计。稀疏功率谱启发了我们,首先表明阵列协方差矩阵的列可以表示为空间谱的欠采样线性测量。其次,我们引入了一种深度神经网络(DNN),它可以从大型训练数据集中学习潜在的逆变换。我们提出的基于dnn的框架提供了更大的孔径和较少的天线。此外,我们降低了硬件复杂性,并允许重新配置接收通道的不稳定性。我们的解决方案能够估计出比接收机信道数量更大的紧密间隔目标的数量。通过数值模拟,我们提出的方法优于最先进的基于深度学习的DOA估计方法,特别是在有限快照和低信噪比(SNR)的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信