Stock market prediction using different neural network classification architectures

K. Schierholt, C. Dagli
{"title":"Stock market prediction using different neural network classification architectures","authors":"K. Schierholt, C. Dagli","doi":"10.1109/CIFER.1996.501826","DOIUrl":null,"url":null,"abstract":"In recent years, many attempts have been made to predict the behavior of bonds, currencies, stocks, or stock markets. The Standard and Poors 500 Index is modeled using different neural network classification architectures. Most previous experiments used multilayer perceptrons for stock market forecasting. A multilayer perceptron architecture and a probabilistic neural network are used to predict the incline, decline, or steadiness of the index. The results of trading with the advice given by the network is then compared with the maximum possible performance and the performance of the index. Results show that both networks can be trained to perform better than the index, with the probabilistic neural network performing slightly better than the multi layer perceptron.","PeriodicalId":378565,"journal":{"name":"IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIFER.1996.501826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

In recent years, many attempts have been made to predict the behavior of bonds, currencies, stocks, or stock markets. The Standard and Poors 500 Index is modeled using different neural network classification architectures. Most previous experiments used multilayer perceptrons for stock market forecasting. A multilayer perceptron architecture and a probabilistic neural network are used to predict the incline, decline, or steadiness of the index. The results of trading with the advice given by the network is then compared with the maximum possible performance and the performance of the index. Results show that both networks can be trained to perform better than the index, with the probabilistic neural network performing slightly better than the multi layer perceptron.
利用不同的神经网络分类架构进行股票市场预测
近年来,许多人试图预测债券、货币、股票或股票市场的行为。标准普尔500指数使用不同的神经网络分类架构进行建模。以前的大多数实验使用多层感知器进行股市预测。多层感知器架构和概率神经网络被用来预测指数的倾斜、下降或稳定。根据网络给出的建议进行交易的结果,然后与最大可能的表现和指数的表现进行比较。结果表明,这两种网络都可以被训练得比指数更好,其中概率神经网络的表现略好于多层感知器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信