Fake News and Sarcasm, what is the limit of a critic and what is intentionally fake?

Fernando Cardoso Durier da Silva, Ana Cristina Bicharra Garcia
{"title":"Fake News and Sarcasm, what is the limit of a critic and what is intentionally fake?","authors":"Fernando Cardoso Durier da Silva, Ana Cristina Bicharra Garcia","doi":"10.5753/sbsc.2019.7807","DOIUrl":null,"url":null,"abstract":"Nowadays it is hard to distinguish what is a fake information made to mislead, cause havoc and hysteria than a true critic that has only the intention to highlight a social problem or an abnormality of some sort. In order to diminish the number of false positives in fake news detection, we experimented two neural network models trained by a combined set of true, fake and sarcastic news in order to test how accurate would be our model. This paper has the goal to propose future steps of an ongoing experiment and discuss the usage of collaboration aided by machines to gather such data to the models.","PeriodicalId":214925,"journal":{"name":"Anais do XV Simpósio Brasileiro de Sistemas Colaborativos (SBSC 2019)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XV Simpósio Brasileiro de Sistemas Colaborativos (SBSC 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbsc.2019.7807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Nowadays it is hard to distinguish what is a fake information made to mislead, cause havoc and hysteria than a true critic that has only the intention to highlight a social problem or an abnormality of some sort. In order to diminish the number of false positives in fake news detection, we experimented two neural network models trained by a combined set of true, fake and sarcastic news in order to test how accurate would be our model. This paper has the goal to propose future steps of an ongoing experiment and discuss the usage of collaboration aided by machines to gather such data to the models.
假新闻和讽刺,批评家的极限是什么,什么是故意假的?
现在很难区分什么是虚假信息,误导,造成混乱和歇斯底里,而不是一个真正的批评者,只是为了突出一个社会问题或某种异常。为了减少假新闻检测中的误报数量,我们实验了两种神经网络模型,这些模型由一组真实、虚假和讽刺新闻组合训练,以测试我们的模型的准确性。本文的目标是提出正在进行的实验的未来步骤,并讨论使用机器辅助的协作来收集这些数据到模型中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信