Strong version of Andrica's conjecture

M. Visser
{"title":"Strong version of Andrica's conjecture","authors":"M. Visser","doi":"10.12988/imf.2019.9729","DOIUrl":null,"url":null,"abstract":"A strong version of Andrica's conjecture can be formulated as follows: Except for $p_n\\in\\{3,7,13,23,31,113\\}$, that is $n\\in\\{2,4,6,9,11,30\\}$, one has$\\sqrt{p_{n+1}}-\\sqrt{p_n} < \\frac{1}{2}.$ While a proof is far out of reach I shall show that this strong version of Andrica's conjecture is unconditionally and explicitly verified for all primes below the location of the 81$^{st}$ maximal prime gap, certainly for all primes $p <2^{64}\\approx 1.844\\times 10^{19}$. Furthermore this strong Andrica conjecture is slightly stronger than Oppermann's conjecture --- which in turn is slightly stronger than both the strong and standard Legendre conjectures, and the strong and standard Brocard conjectures. Thus the Oppermann conjecture, and strong and standard Legendre conjectures, are all unconditionally and explicitly verified for all primes $p <2^{64}\\approx1.844\\times 10^{19}$. Similarly, the strong and standard Brocard conjectures are unconditionally and explicitly verified for all primes $p <2^{32} \\approx 4.294 \\times 10^9$.","PeriodicalId":107214,"journal":{"name":"International Mathematical Forum","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematical Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/imf.2019.9729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A strong version of Andrica's conjecture can be formulated as follows: Except for $p_n\in\{3,7,13,23,31,113\}$, that is $n\in\{2,4,6,9,11,30\}$, one has$\sqrt{p_{n+1}}-\sqrt{p_n} < \frac{1}{2}.$ While a proof is far out of reach I shall show that this strong version of Andrica's conjecture is unconditionally and explicitly verified for all primes below the location of the 81$^{st}$ maximal prime gap, certainly for all primes $p <2^{64}\approx 1.844\times 10^{19}$. Furthermore this strong Andrica conjecture is slightly stronger than Oppermann's conjecture --- which in turn is slightly stronger than both the strong and standard Legendre conjectures, and the strong and standard Brocard conjectures. Thus the Oppermann conjecture, and strong and standard Legendre conjectures, are all unconditionally and explicitly verified for all primes $p <2^{64}\approx1.844\times 10^{19}$. Similarly, the strong and standard Brocard conjectures are unconditionally and explicitly verified for all primes $p <2^{32} \approx 4.294 \times 10^9$.
安德里卡猜想的强烈版本
Andrica猜想的强版本可以表述如下:除了$p_n\in\{3,7,13,23,31,113\}$,即$n\in\{2,4,6,9,11,30\}$,我们有$\sqrt{p_{n+1}}-\sqrt{p_n} < \frac{1}{2}.$虽然证明是遥不可及的,但我将证明,对于81 $^{st}$最大素数间隙以下的所有素数,当然对于所有素数$p <2^{64}\approx 1.844\times 10^{19}$,这个Andrica猜想的强版本是无条件和显式验证的。此外,这个强Andrica猜想比Oppermann猜想略强,而Oppermann猜想又比强且标准的Legendre猜想和强且标准的Brocard猜想略强。因此,对于所有素数$p <2^{64}\approx1.844\times 10^{19}$, Oppermann猜想和强的、标准的Legendre猜想都被无条件地、显式地验证了。同样,对于所有素数$p <2^{32} \approx 4.294 \times 10^9$,强的和标准的布罗卡德猜想是无条件和显式验证的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信