Improvised eigenvector selection for spectral Clustering in image segmentation

Aditya Prakash, S. Balasubramanian, R. R. Sarma
{"title":"Improvised eigenvector selection for spectral Clustering in image segmentation","authors":"Aditya Prakash, S. Balasubramanian, R. R. Sarma","doi":"10.1109/NCVPRIPG.2013.6776233","DOIUrl":null,"url":null,"abstract":"General spectral Clustering(SC) algorithms employ top eigenvectors of normalized Laplacian for spectral rounding. However, recent research has pointed out that in case of noisy and sparse data, all top eigenvectors may not be informative or relevant for the purpose of clustering. Use of these eigenvectors for spectral rounding may lead to bad clustering results. Self-tuning SC method proposed by Zelnik and Perona [1] places a very stringent condition of best alignment possible with canonical coordinate system for selection of relevant eigenvectors. We analyse their algorithm and relax the best alignment criterion to an average alignment criterion. We demonstrate the effectiveness of our improvisation on synthetic as well as natural images by comparing the results using Berkeley segmentation and benchmarking dataset.","PeriodicalId":436402,"journal":{"name":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCVPRIPG.2013.6776233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

General spectral Clustering(SC) algorithms employ top eigenvectors of normalized Laplacian for spectral rounding. However, recent research has pointed out that in case of noisy and sparse data, all top eigenvectors may not be informative or relevant for the purpose of clustering. Use of these eigenvectors for spectral rounding may lead to bad clustering results. Self-tuning SC method proposed by Zelnik and Perona [1] places a very stringent condition of best alignment possible with canonical coordinate system for selection of relevant eigenvectors. We analyse their algorithm and relax the best alignment criterion to an average alignment criterion. We demonstrate the effectiveness of our improvisation on synthetic as well as natural images by comparing the results using Berkeley segmentation and benchmarking dataset.
基于特征向量选择的光谱聚类图像分割
一般谱聚类算法采用归一化拉普拉斯的顶特征向量进行谱舍入。然而,最近的研究指出,在有噪声和稀疏数据的情况下,所有的顶部特征向量可能不具有信息性或相关性,无法用于聚类。使用这些特征向量进行光谱舍入可能导致不好的聚类结果。Zelnik和Perona[1]提出的自调谐SC方法对相关特征向量的选择提出了非常严格的与规范坐标系可能的最佳对准条件。分析了它们的算法,将最佳对齐准则简化为平均对齐准则。通过比较使用伯克利分割和基准数据集的结果,我们证明了我们在合成图像和自然图像上的即兴创作的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信