Reflected three-operator splitting method for monotone inclusion problem

O. Iyiola, C. Enyi, Y. Shehu
{"title":"Reflected three-operator splitting method for monotone inclusion problem","authors":"O. Iyiola, C. Enyi, Y. Shehu","doi":"10.1080/10556788.2021.1924715","DOIUrl":null,"url":null,"abstract":"In this paper, we consider reflected three-operator splitting methods for monotone inclusion problems in real Hilbert spaces. To do this, we first obtain weak convergence analysis and nonasymptotic convergence rate of the reflected Krasnosel'skiĭ-Mann iteration for finding a fixed point of nonexpansive mapping in real Hilbert spaces under some seemingly easy to implement conditions on the iterative parameters. We then apply our results to three-operator splitting for the monotone inclusion problem and consequently obtain the corresponding convergence analysis. Furthermore, we derive reflected primal-dual algorithms for highly structured monotone inclusion problems. Some numerical implementations are drawn from splitting methods to support the theoretical analysis.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2021.1924715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we consider reflected three-operator splitting methods for monotone inclusion problems in real Hilbert spaces. To do this, we first obtain weak convergence analysis and nonasymptotic convergence rate of the reflected Krasnosel'skiĭ-Mann iteration for finding a fixed point of nonexpansive mapping in real Hilbert spaces under some seemingly easy to implement conditions on the iterative parameters. We then apply our results to three-operator splitting for the monotone inclusion problem and consequently obtain the corresponding convergence analysis. Furthermore, we derive reflected primal-dual algorithms for highly structured monotone inclusion problems. Some numerical implementations are drawn from splitting methods to support the theoretical analysis.
单调包含问题的反射三算子分裂方法
本文研究了实数Hilbert空间中单调包含问题的反射三算子分裂方法。为此,在一些看似容易实现的迭代参数条件下,我们首先得到了在实数Hilbert空间中寻找非扩张映射不动点的反射Krasnosel'skiĭ-Mann迭代的弱收敛分析和非渐近收敛率。然后,我们将我们的结果应用于单调包含问题的三算子分裂,从而得到相应的收敛分析。在此基础上,推导了高结构单调包含问题的反射原对偶算法。通过划分方法给出了一些数值实现来支持理论分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信