Optimal data fusion for pedestrian navigation based on UWB and MEMS

V. Renaudin, B. Merminod, M. Kasser
{"title":"Optimal data fusion for pedestrian navigation based on UWB and MEMS","authors":"V. Renaudin, B. Merminod, M. Kasser","doi":"10.1109/PLANS.2008.4570054","DOIUrl":null,"url":null,"abstract":"Indoor pedestrian navigation is probably a very challenging research area. In this context, an optimal data fusion filter that hybridises a large set of observations: angles of arrival (AOA), time differences of arrival (TDOA), accelerations, angular velocities and magnetic field measurements is presented. The coupling of UWB and MEMS data relies on an extended Kalman filter complemented with specific procedures. Geometry based algorithms and a RANSAC paradigm that mitigates the non line of sight (NLOS) UWB propagation are detailed. The benefit of the solution is evaluated and compared with the pure inertial positioning system.","PeriodicalId":446381,"journal":{"name":"2008 IEEE/ION Position, Location and Navigation Symposium","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE/ION Position, Location and Navigation Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.2008.4570054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Indoor pedestrian navigation is probably a very challenging research area. In this context, an optimal data fusion filter that hybridises a large set of observations: angles of arrival (AOA), time differences of arrival (TDOA), accelerations, angular velocities and magnetic field measurements is presented. The coupling of UWB and MEMS data relies on an extended Kalman filter complemented with specific procedures. Geometry based algorithms and a RANSAC paradigm that mitigates the non line of sight (NLOS) UWB propagation are detailed. The benefit of the solution is evaluated and compared with the pure inertial positioning system.
基于超宽带和MEMS的行人导航优化数据融合
室内行人导航可能是一个非常具有挑战性的研究领域。在此背景下,提出了一种混合大量观测数据的最佳数据融合滤波器:到达角(AOA)、到达时间差(TDOA)、加速度、角速度和磁场测量。超宽带和MEMS数据的耦合依赖于扩展的卡尔曼滤波器,并辅以特定的程序。详细介绍了基于几何的算法和RANSAC范式,以减轻非视线(NLOS)超宽带传播。并与纯惯性定位系统进行了效益评价和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信