A Deep Neural Network Compression Algorithm Based on Knowledge Transfer for Edge Device

Chao Li, Xiaolong Ma, Zhulin An, Yongjun Xu
{"title":"A Deep Neural Network Compression Algorithm Based on Knowledge Transfer for Edge Device","authors":"Chao Li, Xiaolong Ma, Zhulin An, Yongjun Xu","doi":"10.1109/SEC.2018.00035","DOIUrl":null,"url":null,"abstract":"The computation and storage capacity of the edge device are limited, which seriously restrict the application of deep neural network in the device. Toward to the intelligent application of the edge device, we introduce the deep neural network compression algorithm based on knowledge transfer, a three-stage pipeline: lightweight, multi-level knowledge transfer and pruning that reduce the network depth, parameter and operation complexity of the deep learning neural networks. We lighten the neural networks by using a global average pooling layer instead of a fully connected layer and replacing a standard convolution with separable convolutions. Next, the multi-level knowledge transfer minimizes the difference between the output of the \"student network\" and the \"teacher network\" in the middle and logits layer, increasing the supervised information when training the \"student network\". Lastly, we prune the network by cuts off the unimportant convolution kernels with a global iterative pruning strategy.","PeriodicalId":376439,"journal":{"name":"2018 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC.2018.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The computation and storage capacity of the edge device are limited, which seriously restrict the application of deep neural network in the device. Toward to the intelligent application of the edge device, we introduce the deep neural network compression algorithm based on knowledge transfer, a three-stage pipeline: lightweight, multi-level knowledge transfer and pruning that reduce the network depth, parameter and operation complexity of the deep learning neural networks. We lighten the neural networks by using a global average pooling layer instead of a fully connected layer and replacing a standard convolution with separable convolutions. Next, the multi-level knowledge transfer minimizes the difference between the output of the "student network" and the "teacher network" in the middle and logits layer, increasing the supervised information when training the "student network". Lastly, we prune the network by cuts off the unimportant convolution kernels with a global iterative pruning strategy.
基于知识转移的边缘设备深度神经网络压缩算法
边缘设备的计算和存储能力有限,严重制约了深度神经网络在边缘设备中的应用。针对边缘设备的智能应用,提出了一种基于知识转移的深度神经网络压缩算法,即轻量化、多层次知识转移和剪枝三阶段流水线,降低了深度学习神经网络的网络深度、参数和运行复杂度。我们通过使用全局平均池化层代替全连接层和用可分离卷积代替标准卷积来减轻神经网络的负担。其次,多层次的知识转移使“学生网络”和“教师网络”在中间和逻辑层的输出差异最小化,增加了训练“学生网络”时的监督信息。最后,采用全局迭代剪枝策略,切断不重要的卷积核,对网络进行剪枝。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信