A semantic-based text classification system

Abdullah Bawakid, M. Oussalah
{"title":"A semantic-based text classification system","authors":"Abdullah Bawakid, M. Oussalah","doi":"10.1109/UKRICIS.2010.5898112","DOIUrl":null,"url":null,"abstract":"This paper presents a system that performs automatic semantic-based text categorization. Using Princeton WordNet, a series of induced methods were implemented that extract semantic features from text and utilize them to decide how similar a document is to different topics. In addition, a bag-of-words method incorporating no knowledge from WordNet is implemented in the system as a basis to compare different WordNet-based approaches. This paper describes the system and reports on a simple analysis performed to evaluate the different implemented methods. At the end, a discussion on the limitations of this study and the future work to optimize the system is presented.","PeriodicalId":359942,"journal":{"name":"2010 IEEE 9th International Conference on Cyberntic Intelligent Systems","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 9th International Conference on Cyberntic Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKRICIS.2010.5898112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

This paper presents a system that performs automatic semantic-based text categorization. Using Princeton WordNet, a series of induced methods were implemented that extract semantic features from text and utilize them to decide how similar a document is to different topics. In addition, a bag-of-words method incorporating no knowledge from WordNet is implemented in the system as a basis to compare different WordNet-based approaches. This paper describes the system and reports on a simple analysis performed to evaluate the different implemented methods. At the end, a discussion on the limitations of this study and the future work to optimize the system is presented.
基于语义的文本分类系统
本文提出了一个基于语义的文本自动分类系统。使用普林斯顿WordNet,实现了一系列的诱导方法,从文本中提取语义特征,并利用它们来确定文档与不同主题的相似程度。此外,在系统中实现了一个不包含WordNet知识的词袋方法,作为比较不同基于WordNet的方法的基础。本文对系统进行了描述,并对不同的实现方法进行了简单的分析。最后,讨论了本研究的局限性和未来优化系统的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信