CASIS: a context-aware speech interface system

H. Lee, Shinsuke Kobayashi, N. Koshizuka, K. Sakamura
{"title":"CASIS: a context-aware speech interface system","authors":"H. Lee, Shinsuke Kobayashi, N. Koshizuka, K. Sakamura","doi":"10.1145/1040830.1040880","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a robust natural language interface called CASIS for controlling devices in an intelligent environment. CASIS is novel in a sense that it integrates physical context acquired from the sensors embedded in the environment with traditionally used context to reduce the system error rate and disambiguate deictic references and elliptical inputs. The n-best result of the speech recognizer is re-ranked by a score calculated using a Bayesian network consisting of information from the input utterance and context. In our prototype system that uses device states, brightness, speaker location, chair occupancy, speech direction and action history as context, the system error rate has been reduced by 41% compared to a baseline system that does not leverage on context information.","PeriodicalId":376409,"journal":{"name":"Proceedings of the 10th international conference on Intelligent user interfaces","volume":"340 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th international conference on Intelligent user interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1040830.1040880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

In this paper, we propose a robust natural language interface called CASIS for controlling devices in an intelligent environment. CASIS is novel in a sense that it integrates physical context acquired from the sensors embedded in the environment with traditionally used context to reduce the system error rate and disambiguate deictic references and elliptical inputs. The n-best result of the speech recognizer is re-ranked by a score calculated using a Bayesian network consisting of information from the input utterance and context. In our prototype system that uses device states, brightness, speaker location, chair occupancy, speech direction and action history as context, the system error rate has been reduced by 41% compared to a baseline system that does not leverage on context information.
CASIS:上下文感知语音接口系统
在本文中,我们提出了一种称为CASIS的鲁棒自然语言接口,用于控制智能环境中的设备。CASIS在某种意义上是新颖的,它将从嵌入环境中的传感器获取的物理环境与传统使用的环境相结合,以降低系统错误率,消除指示参考和椭圆输入的歧义。语音识别器的n个最佳结果通过使用由输入话语和上下文信息组成的贝叶斯网络计算的分数重新排名。在我们的原型系统中,使用设备状态、亮度、说话者位置、椅子占用、语音方向和动作历史作为上下文,与不利用上下文信息的基线系统相比,系统错误率降低了41%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信