{"title":"Conceptualization of a personalized ecoach for wellness promotion","authors":"Martin W. Gerdes, S. Martinez, D. Tjondronegoro","doi":"10.1145/3154862.3154930","DOIUrl":null,"url":null,"abstract":"Evidence-based health promotion programs implement clinical practice guidelines built upon results of clinical trials with a definite number of participants, collected during a specific period of time. Wearable technologies allow for continuous observation of wellness parameters of multiple citizens, combined with monitoring of activities and context parameters involved in citizens' wellness. A statistical inference model can describe the relation between multidimensional activities and context parameters, the wellness of an individual and a comparable reference group, utilizing machine learning techniques and knowledge from continuous observations of multiple citizens. This paper presents a holistic concept of a coach system, namely eCoach, that combines specialized medical evidence available from randomized control trials, with individual and reference knowledge to create and reinforce wellness-based recommendations. The eCoach adapts these recommendations in a continuous personalized coaching dialog addressing citizen's needs and preferences.","PeriodicalId":200810,"journal":{"name":"Proceedings of the 11th EAI International Conference on Pervasive Computing Technologies for Healthcare","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th EAI International Conference on Pervasive Computing Technologies for Healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3154862.3154930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Evidence-based health promotion programs implement clinical practice guidelines built upon results of clinical trials with a definite number of participants, collected during a specific period of time. Wearable technologies allow for continuous observation of wellness parameters of multiple citizens, combined with monitoring of activities and context parameters involved in citizens' wellness. A statistical inference model can describe the relation between multidimensional activities and context parameters, the wellness of an individual and a comparable reference group, utilizing machine learning techniques and knowledge from continuous observations of multiple citizens. This paper presents a holistic concept of a coach system, namely eCoach, that combines specialized medical evidence available from randomized control trials, with individual and reference knowledge to create and reinforce wellness-based recommendations. The eCoach adapts these recommendations in a continuous personalized coaching dialog addressing citizen's needs and preferences.