Comparative analysis of Serbian phonemes

D. Arsenijević, M. Milosavljevic
{"title":"Comparative analysis of Serbian phonemes","authors":"D. Arsenijević, M. Milosavljevic","doi":"10.1109/NEUREL.2002.1057971","DOIUrl":null,"url":null,"abstract":"2 autoregressive (AR) models of Serbian phonemes are examined in this paper. They are the linear autoregressive model and the nonlinear model realized in a feedforward neural network with one hidden layer. It is shown that both models gave satisfying results.","PeriodicalId":347066,"journal":{"name":"6th Seminar on Neural Network Applications in Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th Seminar on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2002.1057971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

2 autoregressive (AR) models of Serbian phonemes are examined in this paper. They are the linear autoregressive model and the nonlinear model realized in a feedforward neural network with one hidden layer. It is shown that both models gave satisfying results.
塞尔维亚语音位的比较分析
本文研究了塞尔维亚语音素的两种自回归模型。它们分别是线性自回归模型和单隐层前馈神经网络实现的非线性模型。结果表明,两种模型都得到了满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信