Using Deep Convolutional Networks for Species Identification of Xylotheque Samples

Geovanni Figueroa-Mata, Erick Mata-Montero, Juan Carlos Valverde-Otarola, Dagoberto Arias-Aguilar
{"title":"Using Deep Convolutional Networks for Species Identification of Xylotheque Samples","authors":"Geovanni Figueroa-Mata, Erick Mata-Montero, Juan Carlos Valverde-Otarola, Dagoberto Arias-Aguilar","doi":"10.1109/IWOBI.2018.8464216","DOIUrl":null,"url":null,"abstract":"Forest species identification is critical to scientifically support many environmental, commercial, forensic, archaeological, and paleontological actividades. Therefore, it is very important to develop fast and accurate identification systems. We present a deep CNN for automated forest species identification based on macroscopic images of wood cuts. We first implement and study a modified version of the LeNet convolutional network, which is trained from scratch with a database of macroscopic images of 41 forest species of the Brazilian flora. With this network we achieve a top-1 accuracy of 93.6%. Additionally, we fine-tune the Resnet50 model with pre-trained weights on Imagenet to reach a top-1 accuracy of 98.03%, which improves previous published results of research on the same image database.","PeriodicalId":127078,"journal":{"name":"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWOBI.2018.8464216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Forest species identification is critical to scientifically support many environmental, commercial, forensic, archaeological, and paleontological actividades. Therefore, it is very important to develop fast and accurate identification systems. We present a deep CNN for automated forest species identification based on macroscopic images of wood cuts. We first implement and study a modified version of the LeNet convolutional network, which is trained from scratch with a database of macroscopic images of 41 forest species of the Brazilian flora. With this network we achieve a top-1 accuracy of 93.6%. Additionally, we fine-tune the Resnet50 model with pre-trained weights on Imagenet to reach a top-1 accuracy of 98.03%, which improves previous published results of research on the same image database.
基于深度卷积网络的木质素样本物种识别
森林物种鉴定对于科学支持许多环境、商业、法医、考古和古生物学活动至关重要。因此,开发快速、准确的识别系统显得尤为重要。提出了一种基于宏观木刻图像的深度CNN森林物种自动识别方法。我们首先实现并研究了LeNet卷积网络的改进版本,该网络是用巴西41种森林植物的宏观图像数据库从头开始训练的。通过这个网络,我们实现了93.6%的前一名准确率。此外,我们在Imagenet上使用预训练的权值对Resnet50模型进行了微调,达到了98.03%的top-1准确率,提高了之前在同一图像数据库上发表的研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信