Time-Drift Aware RF Optimization with Machine Learning Techniques

R. Sharankova, M. Mwaniki, K. Seiya, M. Wesley
{"title":"Time-Drift Aware RF Optimization with Machine Learning Techniques","authors":"R. Sharankova, M. Mwaniki, K. Seiya, M. Wesley","doi":"10.2172/1983803","DOIUrl":null,"url":null,"abstract":"The Fermilab Linac delivers 400 MeV H- beam to the rest of the accelerator chain. Providing stable intensity, energy, and emittance is key since it directly affects downstream machines. To operate high current beam, accelerators must minimize uncontrolled particle loss; this can be accomplished by minimizing beam longitudinal emittance via RF parameter optimization. However, RF tuning is required daily since the resonance frequency of the accelerating cavities is affected by ambient temperature and humidity variations and thus drifts with time. In addition, the energy and phase space distribution of particles emerging from the ion source are subject to fluctuations. Such drift is not unique to Fermilab, but rather affects most laboratories. We are exploring machine learning (ML) algorithms for automated RF tuning for 2 objectives: optimization of Linac output energy and phase oscillation correction, with an emphasis on time-drift aware modeling that can account for conditions changing over time.","PeriodicalId":116964,"journal":{"name":"Time-Drift Aware RF Optimization with Machine Learning Techniques","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Time-Drift Aware RF Optimization with Machine Learning Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2172/1983803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Fermilab Linac delivers 400 MeV H- beam to the rest of the accelerator chain. Providing stable intensity, energy, and emittance is key since it directly affects downstream machines. To operate high current beam, accelerators must minimize uncontrolled particle loss; this can be accomplished by minimizing beam longitudinal emittance via RF parameter optimization. However, RF tuning is required daily since the resonance frequency of the accelerating cavities is affected by ambient temperature and humidity variations and thus drifts with time. In addition, the energy and phase space distribution of particles emerging from the ion source are subject to fluctuations. Such drift is not unique to Fermilab, but rather affects most laboratories. We are exploring machine learning (ML) algorithms for automated RF tuning for 2 objectives: optimization of Linac output energy and phase oscillation correction, with an emphasis on time-drift aware modeling that can account for conditions changing over time.
时间漂移感知射频优化与机器学习技术
费米实验室直线加速器向加速器链的其余部分提供400 MeV的H-束流。提供稳定的强度、能量和发射度是关键,因为它直接影响下游机器。为了操作大电流束流,加速器必须将不受控制的粒子损失最小化;这可以通过射频参数优化最小化波束纵向发射度来实现。然而,由于加速腔的谐振频率受到环境温度和湿度变化的影响,因此需要每天进行射频调谐,从而随时间漂移。此外,离子源产生的粒子的能量和相空间分布受到波动的影响。这种漂移并不是费米实验室独有的,而是影响大多数实验室的。我们正在探索用于自动RF调谐的机器学习(ML)算法,以实现两个目标:优化直线加速器输出能量和相位振荡校正,重点是时间漂移感知建模,可以考虑随时间变化的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信