Unsupervised daily routine modelling from a depth sensor using top-down and bottom-up hierarchies

Yangdi Xu, David Bull, D. Damen
{"title":"Unsupervised daily routine modelling from a depth sensor using top-down and bottom-up hierarchies","authors":"Yangdi Xu, David Bull, D. Damen","doi":"10.1109/ACPR.2015.7486465","DOIUrl":null,"url":null,"abstract":"A person's routine incorporates the frequent and regular behaviour patterns over a time scale, e.g. daily routine. In this work we present a method for unsupervised discovery of a single person's daily routine within an indoor environment using a static depth sensor. Routine is modelled using top down and bottom up hierarchies, formed from location and silhouette spatio-temporal information. We employ and evaluate stay point estimation and time envelopes for better routine modelling. The method is tested for three individuals modelling their natural activity in an office kitchen. Results demonstrate the ability to automatically discover unlabelled routine patterns related to daily activities as well as discard infrequent events.","PeriodicalId":240902,"journal":{"name":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2015.7486465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A person's routine incorporates the frequent and regular behaviour patterns over a time scale, e.g. daily routine. In this work we present a method for unsupervised discovery of a single person's daily routine within an indoor environment using a static depth sensor. Routine is modelled using top down and bottom up hierarchies, formed from location and silhouette spatio-temporal information. We employ and evaluate stay point estimation and time envelopes for better routine modelling. The method is tested for three individuals modelling their natural activity in an office kitchen. Results demonstrate the ability to automatically discover unlabelled routine patterns related to daily activities as well as discard infrequent events.
无监督的日常建模从深度传感器使用自上而下和自下而上的层次结构
一个人的日常生活包括在一段时间内频繁和有规律的行为模式,例如日常生活。在这项工作中,我们提出了一种使用静态深度传感器在室内环境中对单个人的日常生活进行无监督发现的方法。常规建模使用自顶向下和自底向上的层次结构,由位置和轮廓时空信息形成。我们采用并评估停留点估计和时间包络来更好地进行日常建模。该方法在办公室厨房的三个人身上进行了测试,模拟他们的自然活动。结果表明,它能够自动发现与日常活动相关的未标记的常规模式,并丢弃不频繁的事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信