{"title":"Harmonic Distortion Caused by Single-Phase Grid-Connected PV Inverter","authors":"Yang Du, D. Lu","doi":"10.5772/INTECHOPEN.73030","DOIUrl":null,"url":null,"abstract":"Due to the fast growth of photovoltaic (PV) installations, concerns are rising about the harmonic distortion generated from PV inverters. A general model modified from the conventional control structure diagram is introduced to analyze the harmonic generation pro- cess. Causes of the current harmonics are summarized, and its relationship with output power levels is analyzed. In particular for two-stage inverter, unlike existing models that assume the direct current (DC)-link voltage is constant, the DC-link voltage ripple is identified as the source of a series of odd harmonics. The inverter is modeled as a time-varying system by considering the DC-link voltage ripple. A closed-form solution is derived to calculate the amplitude of the ripple-caused harmonics. The theoretical derivation and anal- ysis are verified by both simulation and experimental evaluation.","PeriodicalId":125071,"journal":{"name":"Power System Harmonics - Analysis, Effects and Mitigation Solutions for Power Quality Improvement","volume":"26 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Power System Harmonics - Analysis, Effects and Mitigation Solutions for Power Quality Improvement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.73030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Due to the fast growth of photovoltaic (PV) installations, concerns are rising about the harmonic distortion generated from PV inverters. A general model modified from the conventional control structure diagram is introduced to analyze the harmonic generation pro- cess. Causes of the current harmonics are summarized, and its relationship with output power levels is analyzed. In particular for two-stage inverter, unlike existing models that assume the direct current (DC)-link voltage is constant, the DC-link voltage ripple is identified as the source of a series of odd harmonics. The inverter is modeled as a time-varying system by considering the DC-link voltage ripple. A closed-form solution is derived to calculate the amplitude of the ripple-caused harmonics. The theoretical derivation and anal- ysis are verified by both simulation and experimental evaluation.