{"title":"Extending Flat Motion Planning to Non-flat Systems. Experiments on Aircraft Models Using Maple","authors":"F. Ollivier","doi":"10.1145/3476446.3536179","DOIUrl":null,"url":null,"abstract":"Aircraft models may be considered as flat if one neglects some terms associated to aerodynamics. Computational experiments in Maple show that in some cases a suitably designed feed-back allows to follow such trajectories, when applied to the non-flat model. However some maneuvers may be hard or even impossible to achieve with this flat approximation. In this paper, we propose an iterated process to compute a more achievable trajectory, starting from the flat reference trajectory. More precisely, the unknown neglected terms in the flat model are iteratively re-evaluated using the values obtained at the previous step. This process may be interpreted as a new trajectory parametrization, using an infinite number of derivatives, a property that may be called generalized flatness. We illustrate the pertinence of this approach in flight conditions of increasing difficulties, from single engine flight, to aileron roll.","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476446.3536179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Aircraft models may be considered as flat if one neglects some terms associated to aerodynamics. Computational experiments in Maple show that in some cases a suitably designed feed-back allows to follow such trajectories, when applied to the non-flat model. However some maneuvers may be hard or even impossible to achieve with this flat approximation. In this paper, we propose an iterated process to compute a more achievable trajectory, starting from the flat reference trajectory. More precisely, the unknown neglected terms in the flat model are iteratively re-evaluated using the values obtained at the previous step. This process may be interpreted as a new trajectory parametrization, using an infinite number of derivatives, a property that may be called generalized flatness. We illustrate the pertinence of this approach in flight conditions of increasing difficulties, from single engine flight, to aileron roll.