Jinen Daghrir, Lotfi Tlig, M. Bouchouicha, M. Sayadi
{"title":"Melanoma skin cancer detection using deep learning and classical machine learning techniques: A hybrid approach","authors":"Jinen Daghrir, Lotfi Tlig, M. Bouchouicha, M. Sayadi","doi":"10.1109/ATSIP49331.2020.9231544","DOIUrl":null,"url":null,"abstract":"Melanoma is considered as one of the fatal cancer in the world, this form of skin cancer may spread to other parts of the body in case that it has not been diagnosed in an early stage. Thus, the medical field has known a great evolution with the use of automated diagnosis systems that can help doctors and even normal people to determine a certain kind of disease. In this matter, we introduce a hybrid method for melanoma skin cancer detection that can be used to examine any suspicious lesion. Our proposed system rely on the prediction of three different methods: A convolutional neural network and two classical machine learning classifiers trained with a set of features describing the borders, texture and the color of a skin lesion. These methods are then combined to improve their performances using majority voting. The experiments have shown that using the three methods together, gives the highest accuracy level.","PeriodicalId":384018,"journal":{"name":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP49331.2020.9231544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46
Abstract
Melanoma is considered as one of the fatal cancer in the world, this form of skin cancer may spread to other parts of the body in case that it has not been diagnosed in an early stage. Thus, the medical field has known a great evolution with the use of automated diagnosis systems that can help doctors and even normal people to determine a certain kind of disease. In this matter, we introduce a hybrid method for melanoma skin cancer detection that can be used to examine any suspicious lesion. Our proposed system rely on the prediction of three different methods: A convolutional neural network and two classical machine learning classifiers trained with a set of features describing the borders, texture and the color of a skin lesion. These methods are then combined to improve their performances using majority voting. The experiments have shown that using the three methods together, gives the highest accuracy level.