Hide and Seek Game: A Machine Learning Approach for Detecting Malicious Samples in Analysis Environment

S. Anandaram, Ashik Mathew, A. Jyothish, P. Vinod, F. Mercaldo
{"title":"Hide and Seek Game: A Machine Learning Approach for Detecting Malicious Samples in Analysis Environment","authors":"S. Anandaram, Ashik Mathew, A. Jyothish, P. Vinod, F. Mercaldo","doi":"10.1145/3474124.3474211","DOIUrl":null,"url":null,"abstract":"In this work, we investigate whether malware understands the analysis environment. This analysis is carried out by executing a set of real malicious programs and benign samples on virtual and native machines. The result of execution is API sequence collected independently from virtual machines and host systems. In order to enhance the detection rate and accuracy, we have introduced four feature selection techniques. Thus, identified that feature reduction methods enhance the detection rate to a considerable extent. The experimental study depicted that while classifying malware and benign samples in virtual machines, most of the samples have misclassified, giving a clear indication that many malware samples remain dormant on identifying sandbox environment.","PeriodicalId":144611,"journal":{"name":"2021 Thirteenth International Conference on Contemporary Computing (IC3-2021)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Thirteenth International Conference on Contemporary Computing (IC3-2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3474124.3474211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we investigate whether malware understands the analysis environment. This analysis is carried out by executing a set of real malicious programs and benign samples on virtual and native machines. The result of execution is API sequence collected independently from virtual machines and host systems. In order to enhance the detection rate and accuracy, we have introduced four feature selection techniques. Thus, identified that feature reduction methods enhance the detection rate to a considerable extent. The experimental study depicted that while classifying malware and benign samples in virtual machines, most of the samples have misclassified, giving a clear indication that many malware samples remain dormant on identifying sandbox environment.
捉迷藏游戏:分析环境中检测恶意样本的机器学习方法
在这项工作中,我们调查了恶意软件是否理解分析环境。这种分析是通过在虚拟机和本机上执行一组真正的恶意程序和良性示例来进行的。执行的结果是独立于虚拟机和主机系统收集的API序列。为了提高检测率和准确率,我们引入了四种特征选择技术。由此可见,特征约简方法在很大程度上提高了检测率。实验研究表明,在对虚拟机中的恶意软件和良性样本进行分类时,大多数样本都存在错误分类,这清楚地表明许多恶意软件样本在识别沙箱环境中处于休眠状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信