Off-line signature recognition using parameterized Hough transform

T. Kaewkongka, K. Chamnongthai, B. Thipakorn
{"title":"Off-line signature recognition using parameterized Hough transform","authors":"T. Kaewkongka, K. Chamnongthai, B. Thipakorn","doi":"10.1109/ISSPA.1999.818209","DOIUrl":null,"url":null,"abstract":"This article describes a method of an off-line signature recognition by using the Hough transform to detect stroke lines from the signature image. The Hough transform is used to extract the parameterized Hough space from the signature skeleton as a unique characteristic feature of signatures. In the experiment, the backpropagation neural network is used as a tool to evaluate the performance of the proposed method. The system has been tested with 70 test signatures from different persons. The experimental results reveal a recognition rate 95.24%.","PeriodicalId":302569,"journal":{"name":"ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.1999.818209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

This article describes a method of an off-line signature recognition by using the Hough transform to detect stroke lines from the signature image. The Hough transform is used to extract the parameterized Hough space from the signature skeleton as a unique characteristic feature of signatures. In the experiment, the backpropagation neural network is used as a tool to evaluate the performance of the proposed method. The system has been tested with 70 test signatures from different persons. The experimental results reveal a recognition rate 95.24%.
基于参数化霍夫变换的离线签名识别
本文描述了一种利用霍夫变换从签名图像中检测笔画线的离线签名识别方法。利用霍夫变换从特征骨架中提取参数化的霍夫空间作为特征的唯一特征。在实验中,使用反向传播神经网络作为工具来评估所提出方法的性能。该系统已经测试了来自不同人的70个测试签名。实验结果表明,识别率为95.24%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信