Incorporating User Provided Constraints into Document Clustering

Yanhua Chen, M. Rege, Ming Dong, Jing Hua
{"title":"Incorporating User Provided Constraints into Document Clustering","authors":"Yanhua Chen, M. Rege, Ming Dong, Jing Hua","doi":"10.1109/ICDM.2007.67","DOIUrl":null,"url":null,"abstract":"Document clustering without any prior knowledge or background information is a challenging problem. In this paper, we propose SS-NMF: a semi-supervised non- negative matrix factorization framework for document clustering. In SS-NMF, users are able to provide supervision for document clustering in terms of pairwise constraints on a few documents specifying whether they \"must\" or \"cannot\" be clustered together. Through an iterative algorithm, we perform symmetric tri-factorization of the document- document similarity matrix to infer the document clusters. Theoretically, we show that SS-NMF provides a general framework for semi-supervised clustering and that existing approaches can be considered as special cases of SS-NMF. Through extensive experiments conducted on publicly available data sets, we demonstrate the superior performance of SS-NMF for clustering documents.","PeriodicalId":233758,"journal":{"name":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2007.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

Document clustering without any prior knowledge or background information is a challenging problem. In this paper, we propose SS-NMF: a semi-supervised non- negative matrix factorization framework for document clustering. In SS-NMF, users are able to provide supervision for document clustering in terms of pairwise constraints on a few documents specifying whether they "must" or "cannot" be clustered together. Through an iterative algorithm, we perform symmetric tri-factorization of the document- document similarity matrix to infer the document clusters. Theoretically, we show that SS-NMF provides a general framework for semi-supervised clustering and that existing approaches can be considered as special cases of SS-NMF. Through extensive experiments conducted on publicly available data sets, we demonstrate the superior performance of SS-NMF for clustering documents.
将用户提供的约束纳入文档聚类
没有任何先验知识或背景信息的文档聚类是一个具有挑战性的问题。本文提出了一种用于文档聚类的半监督非负矩阵分解框架——SS-NMF。在SS-NMF中,用户可以通过对几个文档的成对约束来监督文档聚类,指定它们是“必须”聚类还是“不能”聚类。通过迭代算法,对文档-文档相似度矩阵进行对称三因子分解,从而推断出文档聚类。从理论上讲,我们表明SS-NMF为半监督聚类提供了一个通用框架,现有的方法可以被认为是SS-NMF的特殊情况。通过在公开可用的数据集上进行的大量实验,我们证明了SS-NMF在聚类文档方面的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信