Interference statistics in a random mmWave ad hoc network

Andrew Thornburg, T. Bai, R. Heath
{"title":"Interference statistics in a random mmWave ad hoc network","authors":"Andrew Thornburg, T. Bai, R. Heath","doi":"10.1109/ICASSP.2015.7178502","DOIUrl":null,"url":null,"abstract":"Wireless communication at millimeter wave (mmWave) frequencies is attractive for cellular, local area, and ad hoc networks due to the potential for channels with large bandwidths. As a byproduct of directional beamforming and propagation differences, some studies have claimed that mmWave networks will be noise rather than interference limited. This paper presents a derivation of the instantaneous interference-to-noise ratio (INR) distribution of a mmWave ad hoc network. Random network model of transmitters represented by a Poisson point process with a narrowband channel model is used to derive an approximation of the INR distribution. The analysis shows that the shape of the INR distribution is determined largely by the line-of-sight interferers, which depends on the overall network density and building blockage. A main conclusion drawn is that even with highly directional beamforming, interference can only sometimes be neglected in an ad hoc network. With a reasonable choice of system parameters, the interference is nearly always stronger than the noise power in dense networks.","PeriodicalId":117666,"journal":{"name":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2015.7178502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Wireless communication at millimeter wave (mmWave) frequencies is attractive for cellular, local area, and ad hoc networks due to the potential for channels with large bandwidths. As a byproduct of directional beamforming and propagation differences, some studies have claimed that mmWave networks will be noise rather than interference limited. This paper presents a derivation of the instantaneous interference-to-noise ratio (INR) distribution of a mmWave ad hoc network. Random network model of transmitters represented by a Poisson point process with a narrowband channel model is used to derive an approximation of the INR distribution. The analysis shows that the shape of the INR distribution is determined largely by the line-of-sight interferers, which depends on the overall network density and building blockage. A main conclusion drawn is that even with highly directional beamforming, interference can only sometimes be neglected in an ad hoc network. With a reasonable choice of system parameters, the interference is nearly always stronger than the noise power in dense networks.
随机毫米波自组织网络中的干扰统计
由于具有大带宽信道的潜力,毫米波(mmWave)频率的无线通信对蜂窝、局部区域和自组织网络具有吸引力。作为定向波束形成和传播差异的副产品,一些研究声称毫米波网络将受到噪声而不是干扰的限制。本文给出了毫米波自组织网络瞬时干扰噪声比(INR)分布的推导。用带窄带信道模型的泊松点过程表示的发射机随机网络模型,推导出INR分布的近似。分析表明,INR分布的形状在很大程度上取决于视距干扰,而视距干扰又取决于整体网络密度和建筑物阻塞。得出的主要结论是,即使采用高度定向波束形成,在自组织网络中干扰有时也只能被忽略。在密集网络中,只要系统参数选择合理,干扰功率几乎总是大于噪声功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信