Emotion Detection of Textual Data: An Interdisciplinary Survey

Samira Zad, Maryam Heidari, James H. Jones, Özlem Uzuner
{"title":"Emotion Detection of Textual Data: An Interdisciplinary Survey","authors":"Samira Zad, Maryam Heidari, James H. Jones, Özlem Uzuner","doi":"10.1109/AIIoT52608.2021.9454192","DOIUrl":null,"url":null,"abstract":"Emotion is a primary aspect of communication and can be expressed in many modalities. Text-Based Emotion Detection (TBED), one of the fastest growing branches of Natural Language Processing (NLP), is the process of classifying syntactic or semantic units of a corpus into a given set of emotion classes proposed by a psychological model. Automatic TBED mechanisms use machine learning approaches to create computational platforms automating the process of extracting emotions. TBED has a wide variety of applications in the area of artificial intelligence: Semantic analysis of documents and public messages related to terrorist attacks (to mitigate risks), automated analysis of historical corpora, and study of product reviews (to assess customer satisfaction). This work reviews the current literature of TBED and the psychological models associated with them.","PeriodicalId":443405,"journal":{"name":"2021 IEEE World AI IoT Congress (AIIoT)","volume":"338 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE World AI IoT Congress (AIIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIIoT52608.2021.9454192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

Emotion is a primary aspect of communication and can be expressed in many modalities. Text-Based Emotion Detection (TBED), one of the fastest growing branches of Natural Language Processing (NLP), is the process of classifying syntactic or semantic units of a corpus into a given set of emotion classes proposed by a psychological model. Automatic TBED mechanisms use machine learning approaches to create computational platforms automating the process of extracting emotions. TBED has a wide variety of applications in the area of artificial intelligence: Semantic analysis of documents and public messages related to terrorist attacks (to mitigate risks), automated analysis of historical corpora, and study of product reviews (to assess customer satisfaction). This work reviews the current literature of TBED and the psychological models associated with them.
文本数据的情感检测:一个跨学科的研究
情感是沟通的主要方面,可以用多种方式表达。基于文本的情感检测(TBED)是自然语言处理(NLP)中发展最快的分支之一,它是将语料库的句法或语义单位分类到由心理模型提出的一组给定的情感类别的过程。自动TBED机制使用机器学习方法来创建计算平台,使提取情感的过程自动化。TBED在人工智能领域有广泛的应用:与恐怖袭击相关的文档和公共消息的语义分析(以降低风险),历史语料库的自动分析,以及产品评论的研究(以评估客户满意度)。本文回顾了目前有关TBED的文献以及与之相关的心理模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信