Hierarchical Clusterings of Unweighted Graphs

Svein Høgemo, C. Paul, J. A. Telle
{"title":"Hierarchical Clusterings of Unweighted Graphs","authors":"Svein Høgemo, C. Paul, J. A. Telle","doi":"10.4230/LIPIcs.MFCS.2020.47","DOIUrl":null,"url":null,"abstract":"We study the complexity of finding an optimal hierarchical clustering of an unweighted similarity graph under the recently introduced Dasgupta objective function. We introduce a proof technique, called the normalization procedure, that takes any such clustering of a graph $G$ and iteratively improves it until a desired target clustering of G is reached. We use this technique to show both a negative and a positive complexity result. Firstly, we show that in general the problem is NP-complete. Secondly, we consider min-well-behaved graphs, which are graphs $H$ having the property that for any $k$ the graph $H(k)$ being the join of $k$ copies of $H$ has an optimal hierarchical clustering that splits each copy of $H$ in the same optimal way. To optimally cluster such a graph $H(k)$ we thus only need to optimally cluster the smaller graph $H$. Co-bipartite graphs are min-well-behaved, but otherwise they seem to be scarce. We use the normalization procedure to show that also the cycle on 6 vertices is min-well-behaved.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.MFCS.2020.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We study the complexity of finding an optimal hierarchical clustering of an unweighted similarity graph under the recently introduced Dasgupta objective function. We introduce a proof technique, called the normalization procedure, that takes any such clustering of a graph $G$ and iteratively improves it until a desired target clustering of G is reached. We use this technique to show both a negative and a positive complexity result. Firstly, we show that in general the problem is NP-complete. Secondly, we consider min-well-behaved graphs, which are graphs $H$ having the property that for any $k$ the graph $H(k)$ being the join of $k$ copies of $H$ has an optimal hierarchical clustering that splits each copy of $H$ in the same optimal way. To optimally cluster such a graph $H(k)$ we thus only need to optimally cluster the smaller graph $H$. Co-bipartite graphs are min-well-behaved, but otherwise they seem to be scarce. We use the normalization procedure to show that also the cycle on 6 vertices is min-well-behaved.
无加权图的层次聚类
我们研究了在最近引入的Dasgupta目标函数下寻找非加权相似图的最优层次聚类的复杂性。我们引入了一种证明技术,称为归一化过程,它采用图$G$的任何这样的聚类,并迭代地改进它,直到达到所需的目标G聚类。我们使用这种技术来显示负和正的复杂度结果。首先,我们证明了一般情况下问题是np完全的。其次,我们考虑最小行为图,这些图$H$具有这样的性质:对于任意$k$,图$H(k)$是$H$的$k$副本的连接,具有最优的分层聚类,以相同的最优方式分割$H$的每个副本。为了对这样一个图$H(k)$进行最佳聚类,我们只需要对较小的图$H$进行最佳聚类。协二部图表现得很好,但除此之外它们似乎很稀少。我们使用归一化过程来证明6个顶点上的循环是最小行为的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信