{"title":"Hierarchical Clusterings of Unweighted Graphs","authors":"Svein Høgemo, C. Paul, J. A. Telle","doi":"10.4230/LIPIcs.MFCS.2020.47","DOIUrl":null,"url":null,"abstract":"We study the complexity of finding an optimal hierarchical clustering of an unweighted similarity graph under the recently introduced Dasgupta objective function. We introduce a proof technique, called the normalization procedure, that takes any such clustering of a graph $G$ and iteratively improves it until a desired target clustering of G is reached. We use this technique to show both a negative and a positive complexity result. Firstly, we show that in general the problem is NP-complete. Secondly, we consider min-well-behaved graphs, which are graphs $H$ having the property that for any $k$ the graph $H(k)$ being the join of $k$ copies of $H$ has an optimal hierarchical clustering that splits each copy of $H$ in the same optimal way. To optimally cluster such a graph $H(k)$ we thus only need to optimally cluster the smaller graph $H$. Co-bipartite graphs are min-well-behaved, but otherwise they seem to be scarce. We use the normalization procedure to show that also the cycle on 6 vertices is min-well-behaved.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.MFCS.2020.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We study the complexity of finding an optimal hierarchical clustering of an unweighted similarity graph under the recently introduced Dasgupta objective function. We introduce a proof technique, called the normalization procedure, that takes any such clustering of a graph $G$ and iteratively improves it until a desired target clustering of G is reached. We use this technique to show both a negative and a positive complexity result. Firstly, we show that in general the problem is NP-complete. Secondly, we consider min-well-behaved graphs, which are graphs $H$ having the property that for any $k$ the graph $H(k)$ being the join of $k$ copies of $H$ has an optimal hierarchical clustering that splits each copy of $H$ in the same optimal way. To optimally cluster such a graph $H(k)$ we thus only need to optimally cluster the smaller graph $H$. Co-bipartite graphs are min-well-behaved, but otherwise they seem to be scarce. We use the normalization procedure to show that also the cycle on 6 vertices is min-well-behaved.