Interactive data-driven search and discovery of temporal behavior patterns from media streams

Chreston A. Miller
{"title":"Interactive data-driven search and discovery of temporal behavior patterns from media streams","authors":"Chreston A. Miller","doi":"10.1145/2393347.2396512","DOIUrl":null,"url":null,"abstract":"The presented thesis work addresses how social scientists may derive patterns of human behavior captured in media streams. Currently, media streams are being segmented into sequences of events describing the actions captured in the streams, such as the interactions among humans. This segmentation creates a challenging data space to search characterized by non-numerical, temporal, descriptive data, e.g., Person A walks up to Person B at time T. We present an approach that allows one to interactively search and discover temporal behavior patterns within such a data space.","PeriodicalId":212654,"journal":{"name":"Proceedings of the 20th ACM international conference on Multimedia","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2393347.2396512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The presented thesis work addresses how social scientists may derive patterns of human behavior captured in media streams. Currently, media streams are being segmented into sequences of events describing the actions captured in the streams, such as the interactions among humans. This segmentation creates a challenging data space to search characterized by non-numerical, temporal, descriptive data, e.g., Person A walks up to Person B at time T. We present an approach that allows one to interactively search and discover temporal behavior patterns within such a data space.
交互式数据驱动搜索和发现媒体流中的临时行为模式
提出的论文工作解决了社会科学家如何从媒体流中获取人类行为模式。目前,媒体流被分割成描述流中捕获的动作的事件序列,例如人与人之间的交互。这种分割创造了一个具有挑战性的数据空间,以非数字、时间、描述性数据为特征,例如,a人在t时间走向B人。我们提出了一种方法,允许人们在这样的数据空间中交互式搜索和发现时间行为模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信