Research of fault-characteristic extractive technology based on particle swarm optimization

Pan Hongxia, Hu Jinying, Mao Hongwei
{"title":"Research of fault-characteristic extractive technology based on particle swarm optimization","authors":"Pan Hongxia, Hu Jinying, Mao Hongwei","doi":"10.1109/FUZZY.2009.5277325","DOIUrl":null,"url":null,"abstract":"In the work process of gearbox, because the responding signal is very complex, it is difficult to extract its sensitive fault attributive information. The sensitivity of the fault degree, fault position and fault type is very different, so the characteristic parameter set constructed by the traditional characteristic extraction and analysis method is voluminous. Therefore, how to define the reliable and effective fault characteristic parameter set and how to optimize the parameter set by the sensitive degree are the await solved problems to realize real time and online fault diagnosis. In this paper, the characteristic extractive method base on particle swarm optimization (PSO) is presented for the problem of gearbox failure characteristic selection. Then the technology is applied to analyze and process the vibration responding signal of gearbox, extract and optimize the fault characteristic parameter set. Finally the parameter set nearly related to the gearbox's fault is constructed and it is used to the fault diagnosis. It proves validity of the diagnosis result that PSO algorithm has good effectiveness, higher diagnosis precision and fast optimal speed than the traditional genetic algorithm, The experimental result indicates that the wavelet neural network training method based on the PSO algorithm is an effective training algorithm, and meanwhile it is also an available approach to solve fault diagnosis problems.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the work process of gearbox, because the responding signal is very complex, it is difficult to extract its sensitive fault attributive information. The sensitivity of the fault degree, fault position and fault type is very different, so the characteristic parameter set constructed by the traditional characteristic extraction and analysis method is voluminous. Therefore, how to define the reliable and effective fault characteristic parameter set and how to optimize the parameter set by the sensitive degree are the await solved problems to realize real time and online fault diagnosis. In this paper, the characteristic extractive method base on particle swarm optimization (PSO) is presented for the problem of gearbox failure characteristic selection. Then the technology is applied to analyze and process the vibration responding signal of gearbox, extract and optimize the fault characteristic parameter set. Finally the parameter set nearly related to the gearbox's fault is constructed and it is used to the fault diagnosis. It proves validity of the diagnosis result that PSO algorithm has good effectiveness, higher diagnosis precision and fast optimal speed than the traditional genetic algorithm, The experimental result indicates that the wavelet neural network training method based on the PSO algorithm is an effective training algorithm, and meanwhile it is also an available approach to solve fault diagnosis problems.
基于粒子群优化的断层特征提取技术研究
在齿轮箱工作过程中,由于响应信号非常复杂,难以提取其敏感的故障属性信息。由于对故障程度、故障位置和故障类型的敏感性差异很大,传统的特征提取和分析方法构建的特征参数集非常庞大。因此,如何定义可靠有效的故障特征参数集,以及如何根据敏感程度对参数集进行优化,是实现实时在线故障诊断需要解决的问题。针对齿轮箱故障特征选择问题,提出了基于粒子群算法的特征提取方法。然后应用该技术对齿轮箱振动响应信号进行分析处理,提取并优化故障特征参数集。最后构造了与齿轮箱故障密切相关的参数集,并将其用于故障诊断。实验结果表明,粒子群算法比传统遗传算法具有较好的诊断效果、较高的诊断精度和较快的优化速度。实验结果表明,基于粒子群算法的小波神经网络训练方法是一种有效的训练算法,同时也是解决故障诊断问题的一种可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信