Genetic Algorithm (GA)-Based Detection for Coded Partial-Response Channels

Zhiliang Qin, Yu Qin, Yingying Li
{"title":"Genetic Algorithm (GA)-Based Detection for Coded Partial-Response Channels","authors":"Zhiliang Qin, Yu Qin, Yingying Li","doi":"10.1145/3426826.3426844","DOIUrl":null,"url":null,"abstract":"The Bahl-Cocke-Jelinek-Raviv (BCJR) detector for turbo equalization over coded partial-response channels has a complexity growing exponentially with channel memory length. In this paper, we consider the soft-in/soft-out (SISO) channel detection from a combinatorial optimization viewpoint and propose a low-complexity detector based on an efficient implementation of the genetic algorithm (GA). Simulation results show that the proposed detector can approach the bit-error-rate (BER) performance of the optimal BCJR algorithm and outperform other suboptimal schemes.","PeriodicalId":202857,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Machine Learning and Machine Intelligence","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Machine Learning and Machine Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3426826.3426844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Bahl-Cocke-Jelinek-Raviv (BCJR) detector for turbo equalization over coded partial-response channels has a complexity growing exponentially with channel memory length. In this paper, we consider the soft-in/soft-out (SISO) channel detection from a combinatorial optimization viewpoint and propose a low-complexity detector based on an efficient implementation of the genetic algorithm (GA). Simulation results show that the proposed detector can approach the bit-error-rate (BER) performance of the optimal BCJR algorithm and outperform other suboptimal schemes.
基于遗传算法的编码部分响应信道检测
编码部分响应信道上用于turbo均衡的BCJR检测器的复杂度随信道存储长度呈指数增长。本文从组合优化的角度考虑软入/软出(SISO)通道检测问题,提出了一种基于遗传算法(GA)高效实现的低复杂度检测器。仿真结果表明,该检测器可以接近最优BCJR算法的误码率性能,并优于其他次优方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信