Identifying High-resolution Spatiotemporal Components Contributing to the Fast Spiking Response Dynamics of Visual Neurons

Yasin Zamani, Neda Nategh
{"title":"Identifying High-resolution Spatiotemporal Components Contributing to the Fast Spiking Response Dynamics of Visual Neurons","authors":"Yasin Zamani, Neda Nategh","doi":"10.1109/GlobalSIP45357.2019.8969435","DOIUrl":null,"url":null,"abstract":"In many brain areas, responses to sensory stimuli vary due to other cognitive, motor, or task factors. In the visual system the integration of these modulatory factors and visual stimuli can change the spatiotemporal characteristics of visual neurons at various spatial and temporal scales. High resolution changes in the neurons’ spatiotemporal sensitivity happening on fast timescales, however, can challenge computational models that aim to capture the neural computations underlying these fast dynamics. The time-varying visual sensitivity around the time of eye movements is an exemplar of such fast, dynamic modulatory computations. This study develops a statistical framework for identifying the high-resolution spatiotemporal components of visual neurons in the middle temporal area of macaque monkeys during a rapid eye movement task. The identified components can be used in building dynamic encoding models capable of characterizing the time-varying stimulus-response relationships with high resolutions and at the level of single-trial spiking activity. Such dynamic models with high temporal precision can be used to provide higher accuracy in the decoding of time-varying visual information from neuronal responses, which can in turn advance visual brain-machine interface systems to be able to operate robustly and with high accuracy in dynamic scenes.","PeriodicalId":221378,"journal":{"name":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP45357.2019.8969435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In many brain areas, responses to sensory stimuli vary due to other cognitive, motor, or task factors. In the visual system the integration of these modulatory factors and visual stimuli can change the spatiotemporal characteristics of visual neurons at various spatial and temporal scales. High resolution changes in the neurons’ spatiotemporal sensitivity happening on fast timescales, however, can challenge computational models that aim to capture the neural computations underlying these fast dynamics. The time-varying visual sensitivity around the time of eye movements is an exemplar of such fast, dynamic modulatory computations. This study develops a statistical framework for identifying the high-resolution spatiotemporal components of visual neurons in the middle temporal area of macaque monkeys during a rapid eye movement task. The identified components can be used in building dynamic encoding models capable of characterizing the time-varying stimulus-response relationships with high resolutions and at the level of single-trial spiking activity. Such dynamic models with high temporal precision can be used to provide higher accuracy in the decoding of time-varying visual information from neuronal responses, which can in turn advance visual brain-machine interface systems to be able to operate robustly and with high accuracy in dynamic scenes.
识别高分辨率时空成分对视觉神经元快速尖峰响应动力学的贡献
在许多脑区,对感觉刺激的反应因其他认知、运动或任务因素而异。在视觉系统中,这些调节因子与视觉刺激的综合作用可以在不同的时空尺度上改变视觉神经元的时空特征。然而,在快速时间尺度上发生的神经元时空敏感性的高分辨率变化,可能会挑战旨在捕捉这些快速动态背后的神经计算的计算模型。眼球运动前后随时间变化的视觉灵敏度就是这种快速动态调节计算的一个例子。本研究建立了一个统计框架,用于识别猕猴快速眼动任务中中颞区视觉神经元的高分辨率时空成分。所识别的成分可用于构建动态编码模型,该模型能够以高分辨率和单次试验尖峰活动水平表征时变刺激-反应关系。这种具有高时间精度的动态模型可以为从神经元响应中解码时变视觉信息提供更高的精度,从而可以促进视觉脑机接口系统在动态场景中具有鲁棒性和高精度的运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信