{"title":"3-SAT Faster and Simpler - Unique-SAT Bounds for PPSZ Hold in General","authors":"Timon Hertli","doi":"10.1137/120868177","DOIUrl":null,"url":null,"abstract":"The PPSZ algorithm by Paturi, Pudl\\'ak, Saks, and Zane [1998] is the fastest known algorithm for Unique k-SAT, where the input formula does not have more than one satisfying assignment. For k>=5 the same bounds hold for general k-SAT. We show that this is also the case for k=3,4, using a slightly modified PPSZ algorithm. We do the analysis by defining a cost for satisfiable CNF formulas, which we prove to decrease in each PPSZ step by a certain amount. This improves our previous best bounds with Moser and Scheder [2011] for 3-SAT to O(1.308^n) and for 4-SAT to O(1.469^n).","PeriodicalId":326048,"journal":{"name":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"108","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/120868177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 108
Abstract
The PPSZ algorithm by Paturi, Pudl\'ak, Saks, and Zane [1998] is the fastest known algorithm for Unique k-SAT, where the input formula does not have more than one satisfying assignment. For k>=5 the same bounds hold for general k-SAT. We show that this is also the case for k=3,4, using a slightly modified PPSZ algorithm. We do the analysis by defining a cost for satisfiable CNF formulas, which we prove to decrease in each PPSZ step by a certain amount. This improves our previous best bounds with Moser and Scheder [2011] for 3-SAT to O(1.308^n) and for 4-SAT to O(1.469^n).