3-SAT Faster and Simpler - Unique-SAT Bounds for PPSZ Hold in General

Timon Hertli
{"title":"3-SAT Faster and Simpler - Unique-SAT Bounds for PPSZ Hold in General","authors":"Timon Hertli","doi":"10.1137/120868177","DOIUrl":null,"url":null,"abstract":"The PPSZ algorithm by Paturi, Pudl\\'ak, Saks, and Zane [1998] is the fastest known algorithm for Unique k-SAT, where the input formula does not have more than one satisfying assignment. For k>=5 the same bounds hold for general k-SAT. We show that this is also the case for k=3,4, using a slightly modified PPSZ algorithm. We do the analysis by defining a cost for satisfiable CNF formulas, which we prove to decrease in each PPSZ step by a certain amount. This improves our previous best bounds with Moser and Scheder [2011] for 3-SAT to O(1.308^n) and for 4-SAT to O(1.469^n).","PeriodicalId":326048,"journal":{"name":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"108","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/120868177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 108

Abstract

The PPSZ algorithm by Paturi, Pudl\'ak, Saks, and Zane [1998] is the fastest known algorithm for Unique k-SAT, where the input formula does not have more than one satisfying assignment. For k>=5 the same bounds hold for general k-SAT. We show that this is also the case for k=3,4, using a slightly modified PPSZ algorithm. We do the analysis by defining a cost for satisfiable CNF formulas, which we prove to decrease in each PPSZ step by a certain amount. This improves our previous best bounds with Moser and Scheder [2011] for 3-SAT to O(1.308^n) and for 4-SAT to O(1.469^n).
3-SAT更快,更简单- PPSZ保持的唯一sat边界
Paturi, Pudl\ ak, Saks, and Zane[1998]提出的PPSZ算法是目前已知的最快的Unique k-SAT算法,该算法的输入公式不会有多于一个满意的赋值。对于k>=5,一般k- sat也有相同的界。我们使用稍微修改的PPSZ算法证明,对于k=3,4也是如此。我们通过定义一个可满足CNF公式的成本来进行分析,我们证明了每个PPSZ步骤都会减少一定数量的成本。这改进了我们之前使用Moser和Scheder[2011]对3-SAT到O(1.308^n)和4-SAT到O(1.469^n)的最佳界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信