Performance Issues of SYRK Implementations in Shared Memory Environments for Edge Cases

Md Mosharaf Hossain, Thomas M. Hines, S. Ghafoor, Ryan J. Marshall, Muzakhir S. Amanzholov, R. Kannan
{"title":"Performance Issues of SYRK Implementations in Shared Memory Environments for Edge Cases","authors":"Md Mosharaf Hossain, Thomas M. Hines, S. Ghafoor, Ryan J. Marshall, Muzakhir S. Amanzholov, R. Kannan","doi":"10.1109/ICCITECHN.2018.8631936","DOIUrl":null,"url":null,"abstract":"The symmetric rank-k update (SYRK) is a level-3 BLAS routine commonly used by many Data Mining/Machine Learning(DM/ML) algorithms such as regression, dimensionality reduction algorithms like PCA, matrix factorization and k-mean clustering. This paper presents a comprehensive analysis of the SYRK routine under popular dense linear algebra libraries such as OpenBLAS, Intel MKL, and BLIS particularly focusing on edge cases of dense matrices (thin or fat shapes) that are common in DM/ML applications. Our work identifies some performance issues of the SYRK routine in multi-threaded shared memory environments for edge cases and discuss matrix dependent modifications for performance improvement.","PeriodicalId":355984,"journal":{"name":"2018 21st International Conference of Computer and Information Technology (ICCIT)","volume":"250 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 21st International Conference of Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2018.8631936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The symmetric rank-k update (SYRK) is a level-3 BLAS routine commonly used by many Data Mining/Machine Learning(DM/ML) algorithms such as regression, dimensionality reduction algorithms like PCA, matrix factorization and k-mean clustering. This paper presents a comprehensive analysis of the SYRK routine under popular dense linear algebra libraries such as OpenBLAS, Intel MKL, and BLIS particularly focusing on edge cases of dense matrices (thin or fat shapes) that are common in DM/ML applications. Our work identifies some performance issues of the SYRK routine in multi-threaded shared memory environments for edge cases and discuss matrix dependent modifications for performance improvement.
边缘情况下共享内存环境中syk实现的性能问题
对称rank-k更新(syk)是许多数据挖掘/机器学习(DM/ML)算法(如回归、降维算法(如PCA)、矩阵分解和k-均值聚类)常用的3级BLAS例程。本文对流行的密集线性代数库(如OpenBLAS、Intel MKL和BLIS)下的syk例程进行了全面分析,特别关注DM/ML应用中常见的密集矩阵(瘦或胖形状)的边缘情况。我们的工作确定了多线程共享内存环境中syk例程在边缘情况下的一些性能问题,并讨论了基于矩阵的改进以提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信