Subhanshu Gupta, Daibashish Gangopadhyay, H. Lakdawala, J. Rudell, D. Allstot
{"title":"A QPLL-timed direct-RF sampling band-pass ΣΔ ADC with a 1.2 GHz tuning range in 0.13 µm CMOS","authors":"Subhanshu Gupta, Daibashish Gangopadhyay, H. Lakdawala, J. Rudell, D. Allstot","doi":"10.1109/RFIC.2011.5940594","DOIUrl":null,"url":null,"abstract":"A direct-RF sampled band-pass ΣΔ modulator enables reconfigurable RF A/D conversion. It features a programmable narrow-band Q-enhanced low-noise amplifier and a phase-locked loop implemented using a low-phase-noise injection-locked harmonic-filtering quadrature voltage-controlled oscillator. The quadrature outputs of the PLL provide phase synchronization between a raised-cosine DAC and the quantizer. The three-tap raised-cosine finite-impulse response filter is embedded in the RF DAC. A complete sampling receiver demonstrates progress towards Software-Defined Radio (SDR) applications. Implemented in 0.13 µm CMOS, it consumes 41 mW and achieves maximum SNDR values of 50 dB, 46 dB and 40 dB over a 1 MHz bandwidth with 796.5 MHz, 1.001 GHz and 1.924 GHz input carrier frequencies. The measured PLL phase noise is −113 dBc/Hz at an offset frequency of 1 MHz with a −74.5 dBc carrier-reference spur; the RMS period jitter is 1.38 ps at 3.2 GHz.","PeriodicalId":448165,"journal":{"name":"2011 IEEE Radio Frequency Integrated Circuits Symposium","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Radio Frequency Integrated Circuits Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2011.5940594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
A direct-RF sampled band-pass ΣΔ modulator enables reconfigurable RF A/D conversion. It features a programmable narrow-band Q-enhanced low-noise amplifier and a phase-locked loop implemented using a low-phase-noise injection-locked harmonic-filtering quadrature voltage-controlled oscillator. The quadrature outputs of the PLL provide phase synchronization between a raised-cosine DAC and the quantizer. The three-tap raised-cosine finite-impulse response filter is embedded in the RF DAC. A complete sampling receiver demonstrates progress towards Software-Defined Radio (SDR) applications. Implemented in 0.13 µm CMOS, it consumes 41 mW and achieves maximum SNDR values of 50 dB, 46 dB and 40 dB over a 1 MHz bandwidth with 796.5 MHz, 1.001 GHz and 1.924 GHz input carrier frequencies. The measured PLL phase noise is −113 dBc/Hz at an offset frequency of 1 MHz with a −74.5 dBc carrier-reference spur; the RMS period jitter is 1.38 ps at 3.2 GHz.