{"title":"A Wireless Power Transfer System for Electric Fence Energizers","authors":"James Xian, C. Baguley, U. Madawala","doi":"10.1109/SPEC.2018.8636057","DOIUrl":null,"url":null,"abstract":"Increasingly, it is desired to operate electric fence energizers at higher power levels. This can be achieved by applying higher voltage output pulses from an electric fence energizer onto fence lines. However, and to comply with safety standards, this necessitates an increased level of voltage isolation between input and output parts of a mains-supplied electric fence energizer circuit. Therefore, low cost techniques to achieve high voltage isolation are required. Accordingly, this paper reports such a technique, based on integrating a contactless capacitive power transfer, CPT, circuit into the capacitor charging part of an electric fence energizer. Through compensation, reactive power drawn by the CPT circuit can be reduced, while assuring circuit operation as a current source. This is ideal for capacitor charging purposes, and energy transfer through appropriately separated CPT electrodes allows for high voltage isolation. The proposed CPT circuit is modelled. The results of modelling verify performance.","PeriodicalId":335893,"journal":{"name":"2018 IEEE 4th Southern Power Electronics Conference (SPEC)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 4th Southern Power Electronics Conference (SPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPEC.2018.8636057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Increasingly, it is desired to operate electric fence energizers at higher power levels. This can be achieved by applying higher voltage output pulses from an electric fence energizer onto fence lines. However, and to comply with safety standards, this necessitates an increased level of voltage isolation between input and output parts of a mains-supplied electric fence energizer circuit. Therefore, low cost techniques to achieve high voltage isolation are required. Accordingly, this paper reports such a technique, based on integrating a contactless capacitive power transfer, CPT, circuit into the capacitor charging part of an electric fence energizer. Through compensation, reactive power drawn by the CPT circuit can be reduced, while assuring circuit operation as a current source. This is ideal for capacitor charging purposes, and energy transfer through appropriately separated CPT electrodes allows for high voltage isolation. The proposed CPT circuit is modelled. The results of modelling verify performance.