A text sentiment multi-classification method based on dual graph convolutional network

Ling Gan, Zuojie Chen
{"title":"A text sentiment multi-classification method based on dual graph convolutional network","authors":"Ling Gan, Zuojie Chen","doi":"10.1117/12.2682317","DOIUrl":null,"url":null,"abstract":"At present, text sentiment multi-classification model has problems of insufficient semantic feature fusion and ignore the syntactic structure of sentences. Therefore, this paper proposes a dual graph convolutional network model, which extract semantic and syntactic information of text by semantic graph convolutional network and syntactic graph convolutional network. Also, this paper proposes a label graph embedding method to fuse richer semantic features. Finally, experiments on two public datasets show that our method achieves better results.","PeriodicalId":177416,"journal":{"name":"Conference on Electronic Information Engineering and Data Processing","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Electronic Information Engineering and Data Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2682317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

At present, text sentiment multi-classification model has problems of insufficient semantic feature fusion and ignore the syntactic structure of sentences. Therefore, this paper proposes a dual graph convolutional network model, which extract semantic and syntactic information of text by semantic graph convolutional network and syntactic graph convolutional network. Also, this paper proposes a label graph embedding method to fuse richer semantic features. Finally, experiments on two public datasets show that our method achieves better results.
一种基于对偶图卷积网络的文本情感多分类方法
目前,文本情感多分类模型存在语义特征融合不足、忽略句子句法结构等问题。为此,本文提出了一种双图卷积网络模型,该模型通过语义图卷积网络和句法图卷积网络提取文本的语义和句法信息。此外,本文还提出了一种标签图嵌入方法来融合更丰富的语义特征。最后,在两个公共数据集上的实验表明,我们的方法取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信