Generic colour image segmentation via multi-stage region merging

Gaurav Gupta, A. Psarrou, A. Angelopoulou
{"title":"Generic colour image segmentation via multi-stage region merging","authors":"Gaurav Gupta, A. Psarrou, A. Angelopoulou","doi":"10.1109/WIAMIS.2009.5031464","DOIUrl":null,"url":null,"abstract":"We present a non-parametric unsupervised colour image segmentation system that is fast and retains significant perceptual correspondence with the input data. The method uses a region merging approach based on statistics of growing local structures. A two-stage algorithm is employed during which neighbouring regions of homogeneity are traced using feature gradients between groups of pixels, thus giving priority to topological relations. The system finds spatially cohesive and globally salient image regions usually without losing smaller localised areas of high saliency. Unoptimised implementations of the method work nearly in real-time, handling multiple frames a second. The system is successfully applied to problems such as object detection and tracking.","PeriodicalId":233839,"journal":{"name":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2009.5031464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We present a non-parametric unsupervised colour image segmentation system that is fast and retains significant perceptual correspondence with the input data. The method uses a region merging approach based on statistics of growing local structures. A two-stage algorithm is employed during which neighbouring regions of homogeneity are traced using feature gradients between groups of pixels, thus giving priority to topological relations. The system finds spatially cohesive and globally salient image regions usually without losing smaller localised areas of high saliency. Unoptimised implementations of the method work nearly in real-time, handling multiple frames a second. The system is successfully applied to problems such as object detection and tracking.
基于多阶段区域合并的通用彩色图像分割
我们提出了一种非参数无监督彩色图像分割系统,该系统快速且与输入数据保持显著的感知对应关系。该方法采用基于局部结构生长统计的区域合并方法。采用两阶段算法,在此期间使用像素组之间的特征梯度跟踪邻近的均匀性区域,从而优先考虑拓扑关系。该系统发现空间内聚和全局显著的图像区域,通常不会丢失较小的高度显著的局部区域。该方法的未优化实现几乎是实时的,每秒处理多个帧。该系统成功地应用于目标检测和跟踪等问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信