Automatic target detection using multispectral imaging

Bilge Karaçali, W. Snyder
{"title":"Automatic target detection using multispectral imaging","authors":"Bilge Karaçali, W. Snyder","doi":"10.1109/AIPR.2002.1182255","DOIUrl":null,"url":null,"abstract":"We propose using multispectral imaging for on-the-fly target detection and classification instead of hyperspectral imaging. We initially pose the target detection problem as a classification problem with classes identified as target and clutter. The classification data consists of multispectral observations of the region of interest, focusing on visual and infrared wavelengths. We then solve this classification problem using nearest neighbor rule, support vector machines, and maximum likelihood classification. Simulation results on real data indicate that information from a multispectral sensor can offer better performance than both single band and hyperspectral sensors, also showing that costly hyperspectral analysis performance can be attained onboard a small airborne platform such as a smart missile using cost-effective multispectral sensors.","PeriodicalId":379110,"journal":{"name":"Applied Imagery Pattern Recognition Workshop, 2002. Proceedings.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Imagery Pattern Recognition Workshop, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2002.1182255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We propose using multispectral imaging for on-the-fly target detection and classification instead of hyperspectral imaging. We initially pose the target detection problem as a classification problem with classes identified as target and clutter. The classification data consists of multispectral observations of the region of interest, focusing on visual and infrared wavelengths. We then solve this classification problem using nearest neighbor rule, support vector machines, and maximum likelihood classification. Simulation results on real data indicate that information from a multispectral sensor can offer better performance than both single band and hyperspectral sensors, also showing that costly hyperspectral analysis performance can be attained onboard a small airborne platform such as a smart missile using cost-effective multispectral sensors.
使用多光谱成像的自动目标检测
我们提出用多光谱成像代替高光谱成像进行实时目标检测和分类。我们最初将目标检测问题作为一个分类问题,其中分类被识别为目标和杂波。分类数据由感兴趣区域的多光谱观测组成,重点是可见光和红外波长。然后,我们使用最近邻规则、支持向量机和最大似然分类来解决这个分类问题。对真实数据的仿真结果表明,从多光谱传感器获取的信息比单波段和高光谱传感器提供更好的性能,也表明使用高性价比的多光谱传感器可以在智能导弹等小型机载平台上获得高光谱分析性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信