New Results in the Simultaneous Message Passing Model via Information Theoretic Techniques

Rahul Jain, H. Klauck
{"title":"New Results in the Simultaneous Message Passing Model via Information Theoretic Techniques","authors":"Rahul Jain, H. Klauck","doi":"10.1109/CCC.2009.28","DOIUrl":null,"url":null,"abstract":"Consider the following {\\em Simultaneous Message Passing} ($\\smp$) model for computing a relation $f \\subseteq \\cX \\times \\cY \\times \\cZ$. In this model $\\alice$, on input $x \\in \\cX$ and $\\bob$, on input $y\\in\\cY$, send one message each to a third party $\\referee$ who then outputs a $z \\in \\cZ$ such that $(x,y,z)\\in f$. We first show optimal {\\em Direct sum} results for all relations $f$ in this model, both in the quantum and classical settings, in the situation where we allow shared resources (shared entanglement in quantum protocols and public coins in classical protocols) between $\\alice$ and $\\referee$ and $\\bob$ and $\\referee$ and no shared resource between $\\alice$ and $\\bob$. This implies that, in this model, the communication required to compute $k$ simultaneous instances of $f$, with constant success overall, is at least $k$-times the communication required to compute one instance with constant success. This in particular implies an earlier Direct sum result, shown by Chakrabarti, Shi, Wirth and Yao~\\cite{ChakrabartiSWY01} for the Equality function (and a class of other so-called robust functions), in the classical $\\smp$ model with no shared resources between any parties. Furthermore we investigate the gap between the $\\smp$ model and the one-way model in communication complexity and exhibit a partial function that is exponentially more expensive in the former if quantum communication with entanglement is allowed, compared to the latter even in the deterministic case.","PeriodicalId":158572,"journal":{"name":"2009 24th Annual IEEE Conference on Computational Complexity","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 24th Annual IEEE Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2009.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Consider the following {\em Simultaneous Message Passing} ($\smp$) model for computing a relation $f \subseteq \cX \times \cY \times \cZ$. In this model $\alice$, on input $x \in \cX$ and $\bob$, on input $y\in\cY$, send one message each to a third party $\referee$ who then outputs a $z \in \cZ$ such that $(x,y,z)\in f$. We first show optimal {\em Direct sum} results for all relations $f$ in this model, both in the quantum and classical settings, in the situation where we allow shared resources (shared entanglement in quantum protocols and public coins in classical protocols) between $\alice$ and $\referee$ and $\bob$ and $\referee$ and no shared resource between $\alice$ and $\bob$. This implies that, in this model, the communication required to compute $k$ simultaneous instances of $f$, with constant success overall, is at least $k$-times the communication required to compute one instance with constant success. This in particular implies an earlier Direct sum result, shown by Chakrabarti, Shi, Wirth and Yao~\cite{ChakrabartiSWY01} for the Equality function (and a class of other so-called robust functions), in the classical $\smp$ model with no shared resources between any parties. Furthermore we investigate the gap between the $\smp$ model and the one-way model in communication complexity and exhibit a partial function that is exponentially more expensive in the former if quantum communication with entanglement is allowed, compared to the latter even in the deterministic case.
基于信息理论技术的同步消息传递模型的新结果
考虑以下几点 {\em 同时消息传递} ($\smp$计算关系的模型 $f \subseteq \cX \times \cY \times \cZ$. 在这个模型中 $\alice$,输入 $x \in \cX$ 和 $\bob$,输入 $y\in\cY$,每人向第三方发送一条消息 $\referee$ 然后输出a $z \in \cZ$ 这样 $(x,y,z)\in f$. 我们首先展示最优 {\em 直和} 所有关系的结果 $f$ 在这个模型中,在量子和经典设置中,在我们允许共享资源(量子协议中的共享纠缠和经典协议中的公共硬币)的情况下 $\alice$ 和 $\referee$ 和 $\bob$ 和 $\referee$ 没有共享资源 $\alice$ 和 $\bob$. 这意味着,在这个模型中,通信需要进行计算 $k$ 的同时实例 $f$总体上持续的成功,至少是 $k$-乘以计算一个实例并持续成功所需的通信。这特别暗示了一个更早的直接和结果,由Chakrabarti, Shi, Wirth和Yao展示 \cite{ChakrabartiSWY01} 对于等式函数(以及一类其他所谓的鲁棒函数),在经典中 $\smp$ 在任何参与方之间没有共享资源的模型。此外,我们研究了两者之间的差距 $\smp$ 模型和单向模型的通信复杂性,并且在允许量子纠缠通信的情况下,与后者相比,即使在确定性情况下,前者也表现出指数级的昂贵的部分函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信