Identifying gamakas in Carnatic music

Harsh M. Vyas, M. SumaS., S. Koolagudi, K. Guruprasad
{"title":"Identifying gamakas in Carnatic music","authors":"Harsh M. Vyas, M. SumaS., S. Koolagudi, K. Guruprasad","doi":"10.1109/IC3.2015.7346662","DOIUrl":null,"url":null,"abstract":"In this work, an effort has been made to identify the gamakas present in a given piece of Carnatic music clip. Gamakas are the beautification elements used to improve the melody. The identification of gamaka is very important stage in note transcription. In the proposed method, features that correspond to melodic variations such as pitch and energy are used for characterizing the gamakas. The input pitch contour is modelled using Hidden Markov Model with 3 states, namely Attack, Sustain and Decay. These states correspond to ups and downs in the melody of the music. The system is validated using a comprehensive data set consisting 160 songs from 8 different ragas. The average accuracy of 75.86% is achieved using this method.","PeriodicalId":217950,"journal":{"name":"2015 Eighth International Conference on Contemporary Computing (IC3)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Eighth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2015.7346662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this work, an effort has been made to identify the gamakas present in a given piece of Carnatic music clip. Gamakas are the beautification elements used to improve the melody. The identification of gamaka is very important stage in note transcription. In the proposed method, features that correspond to melodic variations such as pitch and energy are used for characterizing the gamakas. The input pitch contour is modelled using Hidden Markov Model with 3 states, namely Attack, Sustain and Decay. These states correspond to ups and downs in the melody of the music. The system is validated using a comprehensive data set consisting 160 songs from 8 different ragas. The average accuracy of 75.86% is achieved using this method.
辨别卡纳蒂克音乐中的伽玛卡
在这项工作中,我们努力识别卡纳蒂克音乐片段中出现的伽玛卡。Gamakas是用来改善旋律的美化元素。音符的识别是音符誊写的一个重要环节。在所提出的方法中,与音调和能量等旋律变化相对应的特征被用于表征伽马。输入音高轮廓采用隐马尔可夫模型建模,模型具有攻击、维持和衰减三种状态。这些状态对应着音乐旋律的起伏。该系统使用由8种不同拉格乐的160首歌曲组成的综合数据集进行验证。该方法的平均准确率为75.86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信