Circuit and System Technologies for Energy-Efficient Edge Robotics: (Invited Paper)

Zishen Wan, A. Lele, A. Raychowdhury
{"title":"Circuit and System Technologies for Energy-Efficient Edge Robotics: (Invited Paper)","authors":"Zishen Wan, A. Lele, A. Raychowdhury","doi":"10.1109/asp-dac52403.2022.9712531","DOIUrl":null,"url":null,"abstract":"As we march towards the age of ubiquitous intelligence, we note that AI and intelligence are progressively moving from the cloud to the edge. The success of Edge-AI is pivoted on innovative circuits and hardware that can enable inference and limited learning in resource-constrained edge autonomous systems. This paper introduces a series of ultra-low-power accelerator and system designs on enabling the intelligence in edge robotic platforms, including reinforcement learning neuro-morphic control, swarm intelligence, and simultaneous mapping and localization. We put an emphasis on the impact of the mixed-signal circuit, neuro-inspired computing system, benchmarking and software infrastructure, as well as algorithm-hardware co-design to realize the most energy-efficient Edge-AI ASICs for the next-generation intelligent and autonomous systems.","PeriodicalId":239260,"journal":{"name":"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/asp-dac52403.2022.9712531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

As we march towards the age of ubiquitous intelligence, we note that AI and intelligence are progressively moving from the cloud to the edge. The success of Edge-AI is pivoted on innovative circuits and hardware that can enable inference and limited learning in resource-constrained edge autonomous systems. This paper introduces a series of ultra-low-power accelerator and system designs on enabling the intelligence in edge robotic platforms, including reinforcement learning neuro-morphic control, swarm intelligence, and simultaneous mapping and localization. We put an emphasis on the impact of the mixed-signal circuit, neuro-inspired computing system, benchmarking and software infrastructure, as well as algorithm-hardware co-design to realize the most energy-efficient Edge-AI ASICs for the next-generation intelligent and autonomous systems.
面向节能边缘机器人的电路与系统技术:(特邀论文)
随着我们走向无处不在的智能时代,我们注意到人工智能和智能正逐步从云端向边缘移动。edge - ai的成功取决于创新的电路和硬件,这些电路和硬件可以在资源受限的边缘自治系统中实现推理和有限学习。本文介绍了一系列超低功耗加速器和系统设计,以实现边缘机器人平台的智能,包括强化学习神经形态控制、群体智能和同时映射和定位。我们将重点放在混合信号电路、神经启发计算系统、基准测试和软件基础设施以及算法硬件协同设计的影响上,以实现最节能的Edge-AI asic,用于下一代智能和自主系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信