{"title":"Two-dimensional materials for functionality-enhanced devices","authors":"P. Gopalan, B. Sensale‐Rodriguez","doi":"10.1049/PBCS039E_CH3","DOIUrl":null,"url":null,"abstract":"The book chapter provides a brief overview of some of the prominent features of non-carbon 2D materials that are currently being investigated and predicted to play significant role in the development of ultrathin electronic and optoelectronic devices in the coming years that could push the boundaries of current CMOS technology.","PeriodicalId":270370,"journal":{"name":"Functionality-Enhanced Devices An alternative to Moore's Law","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functionality-Enhanced Devices An alternative to Moore's Law","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/PBCS039E_CH3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The book chapter provides a brief overview of some of the prominent features of non-carbon 2D materials that are currently being investigated and predicted to play significant role in the development of ultrathin electronic and optoelectronic devices in the coming years that could push the boundaries of current CMOS technology.