Concentration of Random-Coding Error Exponents

Lan V. Truong, G. Cocco, Josep Font-Segura, A. Guillén i Fàbregas
{"title":"Concentration of Random-Coding Error Exponents","authors":"Lan V. Truong, G. Cocco, Josep Font-Segura, A. Guillén i Fàbregas","doi":"10.1109/ITW48936.2021.9611426","DOIUrl":null,"url":null,"abstract":"This paper studies the error exponent of i.i.d. randomly generated codes used for transmission over discrete memoryless channels with maximum likelihood decoding. Specifically, this paper shows that the error exponent of a code, defined as the negative normalized logarithm of the probability of error, converges in probability to the typical error exponent. For high rates, the result is a consequence of the fact that the random-coding error exponent and the sphere-packing error exponent coincide. For low rates, instead, the proof of convergence is based on the fact that the union bound accurately characterizes the probability of error.","PeriodicalId":325229,"journal":{"name":"2021 IEEE Information Theory Workshop (ITW)","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW48936.2021.9611426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper studies the error exponent of i.i.d. randomly generated codes used for transmission over discrete memoryless channels with maximum likelihood decoding. Specifically, this paper shows that the error exponent of a code, defined as the negative normalized logarithm of the probability of error, converges in probability to the typical error exponent. For high rates, the result is a consequence of the fact that the random-coding error exponent and the sphere-packing error exponent coincide. For low rates, instead, the proof of convergence is based on the fact that the union bound accurately characterizes the probability of error.
随机编码错误指数的集中
本文研究了离散无记忆信道中最大似然译码的随机码的误差指数。具体来说,本文证明了码的误差指数,定义为误差概率的负归一化对数,在概率上收敛于典型的误差指数。对于高速率,结果是随机编码误差指数和球体填充误差指数重合的结果。相反,对于低速率,收敛性的证明是基于这样一个事实,即联合界准确地表征了错误的概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信