Short-term LOAD Forecasting Method of TPA-LSTNet Model Based on Time Series Clustering

Zhuyun Li, Chunchao Hu, Yanxu Zhang, Guo Liang, Zhuolin Huang, Qiran Zhang
{"title":"Short-term LOAD Forecasting Method of TPA-LSTNet Model Based on Time Series Clustering","authors":"Zhuyun Li, Chunchao Hu, Yanxu Zhang, Guo Liang, Zhuolin Huang, Qiran Zhang","doi":"10.1109/REPE55559.2022.9949388","DOIUrl":null,"url":null,"abstract":"To provide a stronger guarantee for the power system's stable operation, improving the accuracy of short-term load peak prediction is necessary. This paper proposes a short-term load prediction model TPA-LSTNet that combines TPA (Temporal Pattern Attention) and LSTNet and combines the K-Shape time series clustering method. Firstly, collect external information on the corresponding date of the data, such as daily temperature, humidity, wind direction, whether it is a holiday, Etc. Secondly, using the characteristics of high precision and high efficiency of the K-Shape algorithm, cluster analysis is carried out on the electricity load data in the station area. Then combine the data with external information and input it into the TPA-LSTNet model to extract time series features and train the model. Finally, the prediction of short-term power load is realized using the trained model. The predicted results on an existing urban distribution network verify the prediction accuracy of the method.","PeriodicalId":115453,"journal":{"name":"2022 5th International Conference on Renewable Energy and Power Engineering (REPE)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Renewable Energy and Power Engineering (REPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REPE55559.2022.9949388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To provide a stronger guarantee for the power system's stable operation, improving the accuracy of short-term load peak prediction is necessary. This paper proposes a short-term load prediction model TPA-LSTNet that combines TPA (Temporal Pattern Attention) and LSTNet and combines the K-Shape time series clustering method. Firstly, collect external information on the corresponding date of the data, such as daily temperature, humidity, wind direction, whether it is a holiday, Etc. Secondly, using the characteristics of high precision and high efficiency of the K-Shape algorithm, cluster analysis is carried out on the electricity load data in the station area. Then combine the data with external information and input it into the TPA-LSTNet model to extract time series features and train the model. Finally, the prediction of short-term power load is realized using the trained model. The predicted results on an existing urban distribution network verify the prediction accuracy of the method.
基于时间序列聚类的TPA-LSTNet模型短期负荷预测方法
为了给电力系统的稳定运行提供更有力的保障,需要提高短期负荷峰值预测的准确性。本文提出了一种结合TPA (Temporal Pattern Attention)和LSTNet,并结合k形时间序列聚类方法的短期负荷预测模型TPA-LSTNet。首先,收集数据对应日期的外部信息,如每日温度、湿度、风向、是否放假等。其次,利用K-Shape算法高精度、高效率的特点,对站区电力负荷数据进行聚类分析。然后将数据与外部信息结合,输入到TPA-LSTNet模型中,提取时间序列特征并对模型进行训练。最后,利用训练好的模型实现了短期电力负荷的预测。对已有城市配电网的预测结果验证了该方法的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信