A Framework to Compute Entity Relatedness in Large RDF Knowledge Bases

J. G. Jiménez, Luiz André Portes Paes Leme, Y. Izquierdo, A. B. Neves, M. Casanova
{"title":"A Framework to Compute Entity Relatedness in Large RDF Knowledge Bases","authors":"J. G. Jiménez, Luiz André Portes Paes Leme, Y. Izquierdo, A. B. Neves, M. Casanova","doi":"10.5753/jidm.2022.2435","DOIUrl":null,"url":null,"abstract":"\n\n\nThe entity relatedness problem refers to the question of exploring a knowledge base, represented as an RDF graph, to discover and understand how two entities are connected. This article addresses such problem by combining distributed RDF path search and ranking strategies in a framework called DCoEPinKB, which helps reduce the overall execution time in large RDF graphs and yet maintains adequate ranking accuracy. The framework allows the implementation of different strategies and enables their comparison. The article also reports experiments with data from DBpedia, which provide insights into the performance of different strategies.\n\n\n","PeriodicalId":301338,"journal":{"name":"J. Inf. Data Manag.","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Data Manag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/jidm.2022.2435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The entity relatedness problem refers to the question of exploring a knowledge base, represented as an RDF graph, to discover and understand how two entities are connected. This article addresses such problem by combining distributed RDF path search and ranking strategies in a framework called DCoEPinKB, which helps reduce the overall execution time in large RDF graphs and yet maintains adequate ranking accuracy. The framework allows the implementation of different strategies and enables their comparison. The article also reports experiments with data from DBpedia, which provide insights into the performance of different strategies.
大型RDF知识库中实体关联计算框架
实体相关性问题指的是探索以RDF图表示的知识库,以发现和理解两个实体是如何连接的问题。本文通过在名为DCoEPinKB的框架中结合分布式RDF路径搜索和排名策略来解决此类问题,该框架有助于减少大型RDF图中的总体执行时间,同时保持足够的排名准确性。该框架允许实施不同的策略,并使它们能够进行比较。本文还报告了使用来自DBpedia的数据进行的实验,这些实验提供了对不同策略性能的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信