Growth rate of an endomorphism of a group

K. Falconer, B. Fine, Delaram Kahrobaei
{"title":"Growth rate of an endomorphism of a group","authors":"K. Falconer, B. Fine, Delaram Kahrobaei","doi":"10.1515/gcc.2011.011","DOIUrl":null,"url":null,"abstract":"Abstract Bowen defined the growth rate of an endomorphism of a finitely generated group and related it to the entropy of a map ƒ : M ↦ M on a compact manifold. In this note we study the purely group theoretic aspects of the growth rate of an endomorphism of a finitely generated group. We show that it is finite and bounded by the maximum length of the image of a generator. An equivalent formulation is given that ties the growth rate of an endomorphism to an increasing chain of subgroups. We then consider the relationship between growth rate of an endomorphism on a whole group and the growth rate restricted to a subgroup or considered on a quotient. We use these results to compute the growth rates on direct and semidirect products. We then calculate the growth rate of endomorphisms on several different classes of groups including abelian and nilpotent.","PeriodicalId":119576,"journal":{"name":"Groups Complex. Cryptol.","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complex. Cryptol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc.2011.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Abstract Bowen defined the growth rate of an endomorphism of a finitely generated group and related it to the entropy of a map ƒ : M ↦ M on a compact manifold. In this note we study the purely group theoretic aspects of the growth rate of an endomorphism of a finitely generated group. We show that it is finite and bounded by the maximum length of the image of a generator. An equivalent formulation is given that ties the growth rate of an endomorphism to an increasing chain of subgroups. We then consider the relationship between growth rate of an endomorphism on a whole group and the growth rate restricted to a subgroup or considered on a quotient. We use these results to compute the growth rates on direct and semidirect products. We then calculate the growth rate of endomorphisms on several different classes of groups including abelian and nilpotent.
一个群的自同态的生长速率
Bowen定义了有限生成群的自同态的增长率,并将其与紧流形上映射f: M × M的熵联系起来。本文研究了有限生成群的自同态增长率的纯群论问题。我们证明了它是有限的,并以一个生成器图像的最大长度为界。给出了将自同态的增长率与子群的递增链联系起来的等价公式。然后,我们考虑了整群上的自同态的增长率与子群上的增长率或商上的增长率之间的关系。我们用这些结果来计算直接产品和半直接产品的增长率。然后我们计算了包括阿贝尔群和幂零群在内的几个不同类别群上的自同态的增长率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信